Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/71589 |
Resumo: | Dissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business Intelligence |
id |
RCAP_74975d3c241ee5bc90ac221abf2f4660 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/71589 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patientsAutoencoderRepresentation LearningFeature ExtractionUnsupervised LearningDeep LearningDissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceData representation is one of the fundamental concepts in machine learning. An appropriate representation is found by discovering a structure and automatic detection of patterns in data. In many domains, representation or feature learning is a critical step in improving the performance of machine learning algorithms due to the multidimensionality of data that feeds the model. Some tasks may have different perspectives and approaches depending on how data is represented. In recent years, deep artificial neural networks have provided better solutions to several pattern recognition problems and classification tasks. Deep architectures have also shown their effectiveness in capturing latent features for data representation. In this document, autoencoders will be examined to obtain the representation of Parkinson's disease patients and compared with conventional representation learning algorithms. The results will show whether the proposed method of feature selection leads to the desired accuracy for predicting the severity of Parkinson’s disease.Henriques, Roberto André PereiraCastelli, MauroRUNKazak, Veronica2019-06-03T16:28:31Z2019-04-032019-04-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/71589TID:202250776enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:33:40Zoai:run.unl.pt:10362/71589Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:35:12.946786Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
title |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
spellingShingle |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients Kazak, Veronica Autoencoder Representation Learning Feature Extraction Unsupervised Learning Deep Learning |
title_short |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
title_full |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
title_fullStr |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
title_full_unstemmed |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
title_sort |
Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients |
author |
Kazak, Veronica |
author_facet |
Kazak, Veronica |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Kazak, Veronica |
dc.subject.por.fl_str_mv |
Autoencoder Representation Learning Feature Extraction Unsupervised Learning Deep Learning |
topic |
Autoencoder Representation Learning Feature Extraction Unsupervised Learning Deep Learning |
description |
Dissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business Intelligence |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-03T16:28:31Z 2019-04-03 2019-04-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/71589 TID:202250776 |
url |
http://hdl.handle.net/10362/71589 |
identifier_str_mv |
TID:202250776 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137973281751040 |