Predictive modelling of hospital readmissions in diabetic patients clusters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145706 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_74fdd7f8f59d340ed576b15aa545e372 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145706 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predictive modelling of hospital readmissions in diabetic patients clustersDiabetic patientReadmissionsData MiningClusteringPredictive ModellingDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceDiabetes is a global public health problem with increasing incidence over the past 10 years. This disease's social and economic impacts are widely assessed worldwide, showing a direct and gradual decrease in the individual's ability to work, a gradual loss in the scale of quality of life and a burden on personal finances. The recurrence of hospitalisation is one of the most significant indexes in measuring the quality of care and the opportunity to optimise resources. Numerous techniques identify the patient who will need to be readmitted, such as LACE and HOSPITAL. The purpose of this study was to use a dataset related to the risk of hospital readmission in patients with Diabetes first to apply a clustering of subgroups by similarity. Then structures a predictive analysis with the main algorithms to identify the methodology of best performance. Numerous approaches were performed to prepare the dataset for these two interventions. The results found in the first phase were two clusters based on the total number of hospital recurrences and others on total administrative costs, with K=3. In the second phase, the best algorithm found was Neural Network 3, with a ROC of 0.68 and a misclassification rate of 0.37. When applied the same algorithm in the clusters, there were no gains in the confidence of the indexes, suggesting that there are no substantial gains in the division of subpopulations since the disease has the same behaviour and needs throughout its development.Castelli, MauroRUNSenna, Anne Monteiro Mendes de2022-11-22T16:34:16Z2022-10-282022-10-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145706TID:203103645enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:18Zoai:run.unl.pt:10362/145706Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:13.409015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predictive modelling of hospital readmissions in diabetic patients clusters |
title |
Predictive modelling of hospital readmissions in diabetic patients clusters |
spellingShingle |
Predictive modelling of hospital readmissions in diabetic patients clusters Senna, Anne Monteiro Mendes de Diabetic patient Readmissions Data Mining Clustering Predictive Modelling |
title_short |
Predictive modelling of hospital readmissions in diabetic patients clusters |
title_full |
Predictive modelling of hospital readmissions in diabetic patients clusters |
title_fullStr |
Predictive modelling of hospital readmissions in diabetic patients clusters |
title_full_unstemmed |
Predictive modelling of hospital readmissions in diabetic patients clusters |
title_sort |
Predictive modelling of hospital readmissions in diabetic patients clusters |
author |
Senna, Anne Monteiro Mendes de |
author_facet |
Senna, Anne Monteiro Mendes de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Senna, Anne Monteiro Mendes de |
dc.subject.por.fl_str_mv |
Diabetic patient Readmissions Data Mining Clustering Predictive Modelling |
topic |
Diabetic patient Readmissions Data Mining Clustering Predictive Modelling |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-22T16:34:16Z 2022-10-28 2022-10-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145706 TID:203103645 |
url |
http://hdl.handle.net/10362/145706 |
identifier_str_mv |
TID:203103645 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138113664057344 |