Predictive modelling of hospital readmissions in diabetic patients clusters

Detalhes bibliográficos
Autor(a) principal: Senna, Anne Monteiro Mendes de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/145706
Resumo: Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence
id RCAP_74fdd7f8f59d340ed576b15aa545e372
oai_identifier_str oai:run.unl.pt:10362/145706
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predictive modelling of hospital readmissions in diabetic patients clustersDiabetic patientReadmissionsData MiningClusteringPredictive ModellingDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceDiabetes is a global public health problem with increasing incidence over the past 10 years. This disease's social and economic impacts are widely assessed worldwide, showing a direct and gradual decrease in the individual's ability to work, a gradual loss in the scale of quality of life and a burden on personal finances. The recurrence of hospitalisation is one of the most significant indexes in measuring the quality of care and the opportunity to optimise resources. Numerous techniques identify the patient who will need to be readmitted, such as LACE and HOSPITAL. The purpose of this study was to use a dataset related to the risk of hospital readmission in patients with Diabetes first to apply a clustering of subgroups by similarity. Then structures a predictive analysis with the main algorithms to identify the methodology of best performance. Numerous approaches were performed to prepare the dataset for these two interventions. The results found in the first phase were two clusters based on the total number of hospital recurrences and others on total administrative costs, with K=3. In the second phase, the best algorithm found was Neural Network 3, with a ROC of 0.68 and a misclassification rate of 0.37. When applied the same algorithm in the clusters, there were no gains in the confidence of the indexes, suggesting that there are no substantial gains in the division of subpopulations since the disease has the same behaviour and needs throughout its development.Castelli, MauroRUNSenna, Anne Monteiro Mendes de2022-11-22T16:34:16Z2022-10-282022-10-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145706TID:203103645enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:26:18Zoai:run.unl.pt:10362/145706Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:52:13.409015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predictive modelling of hospital readmissions in diabetic patients clusters
title Predictive modelling of hospital readmissions in diabetic patients clusters
spellingShingle Predictive modelling of hospital readmissions in diabetic patients clusters
Senna, Anne Monteiro Mendes de
Diabetic patient
Readmissions
Data Mining
Clustering
Predictive Modelling
title_short Predictive modelling of hospital readmissions in diabetic patients clusters
title_full Predictive modelling of hospital readmissions in diabetic patients clusters
title_fullStr Predictive modelling of hospital readmissions in diabetic patients clusters
title_full_unstemmed Predictive modelling of hospital readmissions in diabetic patients clusters
title_sort Predictive modelling of hospital readmissions in diabetic patients clusters
author Senna, Anne Monteiro Mendes de
author_facet Senna, Anne Monteiro Mendes de
author_role author
dc.contributor.none.fl_str_mv Castelli, Mauro
RUN
dc.contributor.author.fl_str_mv Senna, Anne Monteiro Mendes de
dc.subject.por.fl_str_mv Diabetic patient
Readmissions
Data Mining
Clustering
Predictive Modelling
topic Diabetic patient
Readmissions
Data Mining
Clustering
Predictive Modelling
description Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence
publishDate 2022
dc.date.none.fl_str_mv 2022-11-22T16:34:16Z
2022-10-28
2022-10-28T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/145706
TID:203103645
url http://hdl.handle.net/10362/145706
identifier_str_mv TID:203103645
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138113664057344