Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations

Detalhes bibliográficos
Autor(a) principal: Tajani, Asmae
Data de Publicação: 2024
Outros Autores: El Alaoui, Fatima-Zahrae, Torres, Delfim F. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/40343
Resumo: We study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub-diffusion systems with boundary Neumann conditions. The result is obtained by using semi-group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator.
id RCAP_755ae3507d41cc58ef7f5e871b5ea7cf
oai_identifier_str oai:ria.ua.pt:10773/40343
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Boundary Controllability of Riemann-Liouville Fractional Semilinear EquationsTime-fractional systemsSemilinear systemsBoundary regional controllabilityFractional diffusionLogistic growth law modelWe study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub-diffusion systems with boundary Neumann conditions. The result is obtained by using semi-group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator.Elsevier2024-01-29T17:06:57Z2024-01-01T00:00:00Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40343eng1007-570410.1016/j.cnsns.2023.107814Tajani, AsmaeEl Alaoui, Fatima-ZahraeTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:18:50Zoai:ria.ua.pt:10773/40343Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:10:20.283291Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
title Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
spellingShingle Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
Tajani, Asmae
Time-fractional systems
Semilinear systems
Boundary regional controllability
Fractional diffusion
Logistic growth law model
title_short Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
title_full Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
title_fullStr Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
title_full_unstemmed Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
title_sort Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
author Tajani, Asmae
author_facet Tajani, Asmae
El Alaoui, Fatima-Zahrae
Torres, Delfim F. M.
author_role author
author2 El Alaoui, Fatima-Zahrae
Torres, Delfim F. M.
author2_role author
author
dc.contributor.author.fl_str_mv Tajani, Asmae
El Alaoui, Fatima-Zahrae
Torres, Delfim F. M.
dc.subject.por.fl_str_mv Time-fractional systems
Semilinear systems
Boundary regional controllability
Fractional diffusion
Logistic growth law model
topic Time-fractional systems
Semilinear systems
Boundary regional controllability
Fractional diffusion
Logistic growth law model
description We study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub-diffusion systems with boundary Neumann conditions. The result is obtained by using semi-group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-29T17:06:57Z
2024-01-01T00:00:00Z
2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/40343
url http://hdl.handle.net/10773/40343
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1007-5704
10.1016/j.cnsns.2023.107814
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137753740345344