Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives

Detalhes bibliográficos
Autor(a) principal: Zouiten, Hayat
Data de Publicação: 2018
Outros Autores: Boutoulout, Ali, Torres, Delfim F. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25097
Resumo: We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state
id RCAP_cfbee7a09313f0c4e074532b96ade54a
oai_identifier_str oai:ria.ua.pt:10773/25097
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivativesEnlarged observabilityFractional evolution systemsHUM approachRegional reconstructionRiemann-Liouville time derivativesWe introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the stateMDPI2019-01-14T14:49:06Z2018-12-01T00:00:00Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25097eng2075-168010.3390/axioms7040092Zouiten, HayatBoutoulout, AliTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:31Zoai:ria.ua.pt:10773/25097Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:22.031072Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
spellingShingle Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
Zouiten, Hayat
Enlarged observability
Fractional evolution systems
HUM approach
Regional reconstruction
Riemann-Liouville time derivatives
title_short Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_full Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_fullStr Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_full_unstemmed Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
title_sort Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
author Zouiten, Hayat
author_facet Zouiten, Hayat
Boutoulout, Ali
Torres, Delfim F. M.
author_role author
author2 Boutoulout, Ali
Torres, Delfim F. M.
author2_role author
author
dc.contributor.author.fl_str_mv Zouiten, Hayat
Boutoulout, Ali
Torres, Delfim F. M.
dc.subject.por.fl_str_mv Enlarged observability
Fractional evolution systems
HUM approach
Regional reconstruction
Riemann-Liouville time derivatives
topic Enlarged observability
Fractional evolution systems
HUM approach
Regional reconstruction
Riemann-Liouville time derivatives
description We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01T00:00:00Z
2018-12-01
2019-01-14T14:49:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25097
url http://hdl.handle.net/10773/25097
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2075-1680
10.3390/axioms7040092
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137638079266816