Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/25097 |
Resumo: | We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state |
id |
RCAP_cfbee7a09313f0c4e074532b96ade54a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25097 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivativesEnlarged observabilityFractional evolution systemsHUM approachRegional reconstructionRiemann-Liouville time derivativesWe introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the stateMDPI2019-01-14T14:49:06Z2018-12-01T00:00:00Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25097eng2075-168010.3390/axioms7040092Zouiten, HayatBoutoulout, AliTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:31Zoai:ria.ua.pt:10773/25097Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:22.031072Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
title |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
spellingShingle |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives Zouiten, Hayat Enlarged observability Fractional evolution systems HUM approach Regional reconstruction Riemann-Liouville time derivatives |
title_short |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
title_full |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
title_fullStr |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
title_full_unstemmed |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
title_sort |
Regional enlarged observability of fractional differential equations with Riemann—Liouville time derivatives |
author |
Zouiten, Hayat |
author_facet |
Zouiten, Hayat Boutoulout, Ali Torres, Delfim F. M. |
author_role |
author |
author2 |
Boutoulout, Ali Torres, Delfim F. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Zouiten, Hayat Boutoulout, Ali Torres, Delfim F. M. |
dc.subject.por.fl_str_mv |
Enlarged observability Fractional evolution systems HUM approach Regional reconstruction Riemann-Liouville time derivatives |
topic |
Enlarged observability Fractional evolution systems HUM approach Regional reconstruction Riemann-Liouville time derivatives |
description |
We introduce the concept of regional enlarged observability for fractional evolution differential equations involving Riemann-Liouville derivatives. The Hilbert Uniqueness Method (HUM) is used to reconstruct the initial state between two prescribed functions, in an interested subregion of the whole domain, without the knowledge of the state |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01T00:00:00Z 2018-12-01 2019-01-14T14:49:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25097 |
url |
http://hdl.handle.net/10773/25097 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2075-1680 10.3390/axioms7040092 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137638079266816 |