Lagrangian intersections, critical points and Qcategory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/1462 |
Resumo: | For a manifold $M$, we prove that any function defined on a vector bundle of basis $M$ and quadratic at infinity has at least $Qcat(M)+1$ critical points. Here $Qcat(M)$ is a homotopically stable version of the LS-category defined by Scheerer, Stanley and Tanré. The key homotopical result is that $Qcat(M)$ can be identified with the relative LS-category of Fadell and Husseini of the pair $(M\times D^{n+1}, M\times S^n)$ for $n$ big enough. Combining this result with the work of Laudenbach and Sikorav, we obtain that if $M$ is closed, for any hamiltonian diffeomorphism with compact support $\psi$ of $T^{\ast}M$, $\# (\psi (M) \cap M)\geq Qcat(M)+1$, which improves all previously known homotopical estimates of this intersection number. |
id |
RCAP_755b08ed3824d6e6ee1dd21e3548c675 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/1462 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lagrangian intersections, critical points and QcategoryLusternik-Schnirelmann categoryLagrangian intersectionsScience & TechnologyFor a manifold $M$, we prove that any function defined on a vector bundle of basis $M$ and quadratic at infinity has at least $Qcat(M)+1$ critical points. Here $Qcat(M)$ is a homotopically stable version of the LS-category defined by Scheerer, Stanley and Tanré. The key homotopical result is that $Qcat(M)$ can be identified with the relative LS-category of Fadell and Husseini of the pair $(M\times D^{n+1}, M\times S^n)$ for $n$ big enough. Combining this result with the work of Laudenbach and Sikorav, we obtain that if $M$ is closed, for any hamiltonian diffeomorphism with compact support $\psi$ of $T^{\ast}M$, $\# (\psi (M) \cap M)\geq Qcat(M)+1$, which improves all previously known homotopical estimates of this intersection number.Fundação para a Ciência e a Tecnologia (FCT) - Programa operacional "Ciência, Tecnologia, Inovação" (POCTI)Springer VerlagUniversidade do MinhoMoyaux, Pierre-MarieVandembroucq, Lucile2004-012004-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1462eng"Mathematische zeitschrift". ISSN 0025-5874. 246 (2004) 85-103.0025-587410.1007/s00209-003-0583-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:05:07Zoai:repositorium.sdum.uminho.pt:1822/1462Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:55:30.411791Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lagrangian intersections, critical points and Qcategory |
title |
Lagrangian intersections, critical points and Qcategory |
spellingShingle |
Lagrangian intersections, critical points and Qcategory Moyaux, Pierre-Marie Lusternik-Schnirelmann category Lagrangian intersections Science & Technology |
title_short |
Lagrangian intersections, critical points and Qcategory |
title_full |
Lagrangian intersections, critical points and Qcategory |
title_fullStr |
Lagrangian intersections, critical points and Qcategory |
title_full_unstemmed |
Lagrangian intersections, critical points and Qcategory |
title_sort |
Lagrangian intersections, critical points and Qcategory |
author |
Moyaux, Pierre-Marie |
author_facet |
Moyaux, Pierre-Marie Vandembroucq, Lucile |
author_role |
author |
author2 |
Vandembroucq, Lucile |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Moyaux, Pierre-Marie Vandembroucq, Lucile |
dc.subject.por.fl_str_mv |
Lusternik-Schnirelmann category Lagrangian intersections Science & Technology |
topic |
Lusternik-Schnirelmann category Lagrangian intersections Science & Technology |
description |
For a manifold $M$, we prove that any function defined on a vector bundle of basis $M$ and quadratic at infinity has at least $Qcat(M)+1$ critical points. Here $Qcat(M)$ is a homotopically stable version of the LS-category defined by Scheerer, Stanley and Tanré. The key homotopical result is that $Qcat(M)$ can be identified with the relative LS-category of Fadell and Husseini of the pair $(M\times D^{n+1}, M\times S^n)$ for $n$ big enough. Combining this result with the work of Laudenbach and Sikorav, we obtain that if $M$ is closed, for any hamiltonian diffeomorphism with compact support $\psi$ of $T^{\ast}M$, $\# (\psi (M) \cap M)\geq Qcat(M)+1$, which improves all previously known homotopical estimates of this intersection number. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01 2004-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/1462 |
url |
http://hdl.handle.net/1822/1462 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Mathematische zeitschrift". ISSN 0025-5874. 246 (2004) 85-103. 0025-5874 10.1007/s00209-003-0583-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132340060946432 |