Lagrangian intersections, critical points and Qcategory

Detalhes bibliográficos
Autor(a) principal: Moyaux, Pierre-Marie
Data de Publicação: 2004
Outros Autores: Vandembroucq, Lucile
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/1462
Resumo: For a manifold $M$, we prove that any function defined on a vector bundle of basis $M$ and quadratic at infinity has at least $Qcat(M)+1$ critical points. Here $Qcat(M)$ is a homotopically stable version of the LS-category defined by Scheerer, Stanley and Tanré. The key homotopical result is that $Qcat(M)$ can be identified with the relative LS-category of Fadell and Husseini of the pair $(M\times D^{n+1}, M\times S^n)$ for $n$ big enough. Combining this result with the work of Laudenbach and Sikorav, we obtain that if $M$ is closed, for any hamiltonian diffeomorphism with compact support $\psi$ of $T^{\ast}M$, $\# (\psi (M) \cap M)\geq Qcat(M)+1$, which improves all previously known homotopical estimates of this intersection number.
id RCAP_755b08ed3824d6e6ee1dd21e3548c675
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/1462
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Lagrangian intersections, critical points and QcategoryLusternik-Schnirelmann categoryLagrangian intersectionsScience & TechnologyFor a manifold $M$, we prove that any function defined on a vector bundle of basis $M$ and quadratic at infinity has at least $Qcat(M)+1$ critical points. Here $Qcat(M)$ is a homotopically stable version of the LS-category defined by Scheerer, Stanley and Tanré. The key homotopical result is that $Qcat(M)$ can be identified with the relative LS-category of Fadell and Husseini of the pair $(M\times D^{n+1}, M\times S^n)$ for $n$ big enough. Combining this result with the work of Laudenbach and Sikorav, we obtain that if $M$ is closed, for any hamiltonian diffeomorphism with compact support $\psi$ of $T^{\ast}M$, $\# (\psi (M) \cap M)\geq Qcat(M)+1$, which improves all previously known homotopical estimates of this intersection number.Fundação para a Ciência e a Tecnologia (FCT) - Programa operacional "Ciência, Tecnologia, Inovação" (POCTI)Springer VerlagUniversidade do MinhoMoyaux, Pierre-MarieVandembroucq, Lucile2004-012004-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/1462eng"Mathematische zeitschrift". ISSN 0025-5874. 246 (2004) 85-103.0025-587410.1007/s00209-003-0583-2info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:05:07Zoai:repositorium.sdum.uminho.pt:1822/1462Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:55:30.411791Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Lagrangian intersections, critical points and Qcategory
title Lagrangian intersections, critical points and Qcategory
spellingShingle Lagrangian intersections, critical points and Qcategory
Moyaux, Pierre-Marie
Lusternik-Schnirelmann category
Lagrangian intersections
Science & Technology
title_short Lagrangian intersections, critical points and Qcategory
title_full Lagrangian intersections, critical points and Qcategory
title_fullStr Lagrangian intersections, critical points and Qcategory
title_full_unstemmed Lagrangian intersections, critical points and Qcategory
title_sort Lagrangian intersections, critical points and Qcategory
author Moyaux, Pierre-Marie
author_facet Moyaux, Pierre-Marie
Vandembroucq, Lucile
author_role author
author2 Vandembroucq, Lucile
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Moyaux, Pierre-Marie
Vandembroucq, Lucile
dc.subject.por.fl_str_mv Lusternik-Schnirelmann category
Lagrangian intersections
Science & Technology
topic Lusternik-Schnirelmann category
Lagrangian intersections
Science & Technology
description For a manifold $M$, we prove that any function defined on a vector bundle of basis $M$ and quadratic at infinity has at least $Qcat(M)+1$ critical points. Here $Qcat(M)$ is a homotopically stable version of the LS-category defined by Scheerer, Stanley and Tanré. The key homotopical result is that $Qcat(M)$ can be identified with the relative LS-category of Fadell and Husseini of the pair $(M\times D^{n+1}, M\times S^n)$ for $n$ big enough. Combining this result with the work of Laudenbach and Sikorav, we obtain that if $M$ is closed, for any hamiltonian diffeomorphism with compact support $\psi$ of $T^{\ast}M$, $\# (\psi (M) \cap M)\geq Qcat(M)+1$, which improves all previously known homotopical estimates of this intersection number.
publishDate 2004
dc.date.none.fl_str_mv 2004-01
2004-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/1462
url http://hdl.handle.net/1822/1462
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Mathematische zeitschrift". ISSN 0025-5874. 246 (2004) 85-103.
0025-5874
10.1007/s00209-003-0583-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132340060946432