On the topological complexity of manifolds with abelian fundamental group
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/87044 |
Resumo: | We find conditions which ensure that the topological complexity of a closed manifold M with abelian fundamental group is nonmaximal, and see through examples that our conditions are sharp. This generalizes results of Costa and Farber on the topological complexity of spaces with small fundamen- tal group. Relaxing the commutativity condition on the fundamental group, we also generalize results of Dranishnikov on the Lusternik–Schnirelmann category of the cofibre of the diagonal map ∆ : M → M × M for nonorientable surfaces by establishing the nonmaximality of this invariant for a large class of manifolds. |
id |
RCAP_78558e6fb6bd1ac6e8a2d12d794433dd |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/87044 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the topological complexity of manifolds with abelian fundamental groupLS-categoryTopological complexityLusternik-Schnirelmann categoryCiências Naturais::MatemáticasWe find conditions which ensure that the topological complexity of a closed manifold M with abelian fundamental group is nonmaximal, and see through examples that our conditions are sharp. This generalizes results of Costa and Farber on the topological complexity of spaces with small fundamen- tal group. Relaxing the commutativity condition on the fundamental group, we also generalize results of Dranishnikov on the Lusternik–Schnirelmann category of the cofibre of the diagonal map ∆ : M → M × M for nonorientable surfaces by establishing the nonmaximality of this invariant for a large class of manifolds.The second author is partially supported by Portuguese Funds through FCT – Fundação para a Ciência e a Tecnologia, within the projects UIDB/00013/2020 and UIDP/00013/2020.De GruyterUniversidade do MinhoCohen, Daniel C.Vandembroucq, Lucile20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/87044engCohen, D. C., & Vandembroucq, L. (2021, September 25). On the topological complexity of manifolds with abelian fundamental group. Forum Mathematicum. Walter de Gruyter GmbH. http://doi.org/10.1515/forum-2021-00940933-77411435-533710.1515/forum-2021-0094https://www.degruyter.com/document/doi/10.1515/forum-2021-0094/htmlinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:56:49Zoai:repositorium.sdum.uminho.pt:1822/87044Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:56:49Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the topological complexity of manifolds with abelian fundamental group |
title |
On the topological complexity of manifolds with abelian fundamental group |
spellingShingle |
On the topological complexity of manifolds with abelian fundamental group Cohen, Daniel C. LS-category Topological complexity Lusternik-Schnirelmann category Ciências Naturais::Matemáticas |
title_short |
On the topological complexity of manifolds with abelian fundamental group |
title_full |
On the topological complexity of manifolds with abelian fundamental group |
title_fullStr |
On the topological complexity of manifolds with abelian fundamental group |
title_full_unstemmed |
On the topological complexity of manifolds with abelian fundamental group |
title_sort |
On the topological complexity of manifolds with abelian fundamental group |
author |
Cohen, Daniel C. |
author_facet |
Cohen, Daniel C. Vandembroucq, Lucile |
author_role |
author |
author2 |
Vandembroucq, Lucile |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cohen, Daniel C. Vandembroucq, Lucile |
dc.subject.por.fl_str_mv |
LS-category Topological complexity Lusternik-Schnirelmann category Ciências Naturais::Matemáticas |
topic |
LS-category Topological complexity Lusternik-Schnirelmann category Ciências Naturais::Matemáticas |
description |
We find conditions which ensure that the topological complexity of a closed manifold M with abelian fundamental group is nonmaximal, and see through examples that our conditions are sharp. This generalizes results of Costa and Farber on the topological complexity of spaces with small fundamen- tal group. Relaxing the commutativity condition on the fundamental group, we also generalize results of Dranishnikov on the Lusternik–Schnirelmann category of the cofibre of the diagonal map ∆ : M → M × M for nonorientable surfaces by establishing the nonmaximality of this invariant for a large class of manifolds. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/87044 |
url |
https://hdl.handle.net/1822/87044 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Cohen, D. C., & Vandembroucq, L. (2021, September 25). On the topological complexity of manifolds with abelian fundamental group. Forum Mathematicum. Walter de Gruyter GmbH. http://doi.org/10.1515/forum-2021-0094 0933-7741 1435-5337 10.1515/forum-2021-0094 https://www.degruyter.com/document/doi/10.1515/forum-2021-0094/html |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544468110245888 |