Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/24095 |
Resumo: | Detecting spoofing attacks on the positions of unmanned aerial vehicles (UAVs) within a swarm is challenging. Traditional methods relying solely on individually reported positions and pairwise distance measurements are ineffective in identifying the misbehavior of malicious UAVs. This paper presents a novel systematic structure designed to detect and mitigate spoofing attacks in UAV swarms. We formulate the problem of detecting malicious UAVs as a localization feasibility problem, leveraging the reported positions and distance measurements. To address this problem, we develop a semidefinite relaxation (SDR) approach, which reformulates the non-convex localization problem into a convex and tractable semidefinite program (SDP). Additionally, we propose two innovative algorithms that leverage the proximity of neighboring UAVs to identify malicious UAVs effectively. Simulations demonstrate the superior performance of our proposed approaches compared to existing benchmarks. Our methods exhibit robustness across various swarm networks, showcasing their effectiveness in detecting and mitigating spoofing attacks. Specifically, the detection success rate is improved by up to 65%, 55%, and 51% against distributed, collusion, and mixed attacks, respectively, compared to the benchmarks. |
id |
RCAP_7568830a10b8278f88a72cc169ea1bb3 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/24095 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations231201Detecting spoofing attacks on the positions of unmanned aerial vehicles (UAVs) within a swarm is challenging. Traditional methods relying solely on individually reported positions and pairwise distance measurements are ineffective in identifying the misbehavior of malicious UAVs. This paper presents a novel systematic structure designed to detect and mitigate spoofing attacks in UAV swarms. We formulate the problem of detecting malicious UAVs as a localization feasibility problem, leveraging the reported positions and distance measurements. To address this problem, we develop a semidefinite relaxation (SDR) approach, which reformulates the non-convex localization problem into a convex and tractable semidefinite program (SDP). Additionally, we propose two innovative algorithms that leverage the proximity of neighboring UAVs to identify malicious UAVs effectively. Simulations demonstrate the superior performance of our proposed approaches compared to existing benchmarks. Our methods exhibit robustness across various swarm networks, showcasing their effectiveness in detecting and mitigating spoofing attacks. Specifically, the detection success rate is improved by up to 65%, 55%, and 51% against distributed, collusion, and mixed attacks, respectively, compared to the benchmarks.Repositório Científico do Instituto Politécnico do PortoBi, SiguoLi, KaiHu, ShuyanNi, WeiWang, CongWang, Xin2023-12-07T11:02:55Z2023-12-062023-12-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/24095enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-20T01:56:16Zoai:recipp.ipp.pt:10400.22/24095Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:42:18.980061Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations 231201 |
title |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations |
spellingShingle |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations Bi, Siguo |
title_short |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations |
title_full |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations |
title_fullStr |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations |
title_full_unstemmed |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations |
title_sort |
Detection and Mitigation of Position Spoofing Attacks on Cooperative UAV Swarm Formations |
author |
Bi, Siguo |
author_facet |
Bi, Siguo Li, Kai Hu, Shuyan Ni, Wei Wang, Cong Wang, Xin |
author_role |
author |
author2 |
Li, Kai Hu, Shuyan Ni, Wei Wang, Cong Wang, Xin |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Bi, Siguo Li, Kai Hu, Shuyan Ni, Wei Wang, Cong Wang, Xin |
description |
Detecting spoofing attacks on the positions of unmanned aerial vehicles (UAVs) within a swarm is challenging. Traditional methods relying solely on individually reported positions and pairwise distance measurements are ineffective in identifying the misbehavior of malicious UAVs. This paper presents a novel systematic structure designed to detect and mitigate spoofing attacks in UAV swarms. We formulate the problem of detecting malicious UAVs as a localization feasibility problem, leveraging the reported positions and distance measurements. To address this problem, we develop a semidefinite relaxation (SDR) approach, which reformulates the non-convex localization problem into a convex and tractable semidefinite program (SDP). Additionally, we propose two innovative algorithms that leverage the proximity of neighboring UAVs to identify malicious UAVs effectively. Simulations demonstrate the superior performance of our proposed approaches compared to existing benchmarks. Our methods exhibit robustness across various swarm networks, showcasing their effectiveness in detecting and mitigating spoofing attacks. Specifically, the detection success rate is improved by up to 65%, 55%, and 51% against distributed, collusion, and mixed attacks, respectively, compared to the benchmarks. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-07T11:02:55Z 2023-12-06 2023-12-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/24095 |
url |
http://hdl.handle.net/10400.22/24095 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136324817518592 |