Chimpanzee face recognition from videos in the wild using deep learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/12879 |
Resumo: | Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation. |
id |
RCAP_75733fe977ed43c39c3260a711cafc2a |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/12879 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Chimpanzee face recognition from videos in the wild using deep learningVideo recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.Agência financiadora Número do subsídio Engineering & Physical Sciences Research Council (EPSRC) EP/M013774/1 Cooperative Research Program of Primate Research Institute, Kyoto University Google Clarendon Fund Boise Trust Fund Wolfson College, University of Oxford Leverhulme Trust PLP-2016-114 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science 16H06283 Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science LGP-U04American Association for the Advancement of ScienceSapientiaSchofield, DanielNagrani, ArshaZisserman, AndrewHayashi, MisatoMatsuzawa, TetsuroBiro, DoraCarvalho, Susana2019-11-13T12:15:29Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/12879eng2375-254810.1126/sciadv.aaw0736info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:24:50Zoai:sapientia.ualg.pt:10400.1/12879Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:04:07.274875Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Chimpanzee face recognition from videos in the wild using deep learning |
title |
Chimpanzee face recognition from videos in the wild using deep learning |
spellingShingle |
Chimpanzee face recognition from videos in the wild using deep learning Schofield, Daniel |
title_short |
Chimpanzee face recognition from videos in the wild using deep learning |
title_full |
Chimpanzee face recognition from videos in the wild using deep learning |
title_fullStr |
Chimpanzee face recognition from videos in the wild using deep learning |
title_full_unstemmed |
Chimpanzee face recognition from videos in the wild using deep learning |
title_sort |
Chimpanzee face recognition from videos in the wild using deep learning |
author |
Schofield, Daniel |
author_facet |
Schofield, Daniel Nagrani, Arsha Zisserman, Andrew Hayashi, Misato Matsuzawa, Tetsuro Biro, Dora Carvalho, Susana |
author_role |
author |
author2 |
Nagrani, Arsha Zisserman, Andrew Hayashi, Misato Matsuzawa, Tetsuro Biro, Dora Carvalho, Susana |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Schofield, Daniel Nagrani, Arsha Zisserman, Andrew Hayashi, Misato Matsuzawa, Tetsuro Biro, Dora Carvalho, Susana |
description |
Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-13T12:15:29Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/12879 |
url |
http://hdl.handle.net/10400.1/12879 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2375-2548 10.1126/sciadv.aaw0736 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Association for the Advancement of Science |
publisher.none.fl_str_mv |
American Association for the Advancement of Science |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133276877619200 |