Chimpanzee face recognition from videos in the wild using deep learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/107366 https://doi.org/10.1126/sciadv.aaw0736 |
Resumo: | Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation. |
id |
RCAP_be4a09937e5faddb325e992d68a18828 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/107366 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Chimpanzee face recognition from videos in the wild using deep learningAnimalsFacial RecognitionFemaleMalePan troglodytesVideo RecordingVideo recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.American Association for the Advancement of Science2019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/107366http://hdl.handle.net/10316/107366https://doi.org/10.1126/sciadv.aaw0736eng2375-2548Schofield, DanielNagrani, ArshaZisserman, AndrewHayashi, MisatoMatsuzawa, TetsuroBiro, DoraCarvalho, Susanainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-06T09:40:28Zoai:estudogeral.uc.pt:10316/107366Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:43.851487Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Chimpanzee face recognition from videos in the wild using deep learning |
title |
Chimpanzee face recognition from videos in the wild using deep learning |
spellingShingle |
Chimpanzee face recognition from videos in the wild using deep learning Schofield, Daniel Animals Facial Recognition Female Male Pan troglodytes Video Recording |
title_short |
Chimpanzee face recognition from videos in the wild using deep learning |
title_full |
Chimpanzee face recognition from videos in the wild using deep learning |
title_fullStr |
Chimpanzee face recognition from videos in the wild using deep learning |
title_full_unstemmed |
Chimpanzee face recognition from videos in the wild using deep learning |
title_sort |
Chimpanzee face recognition from videos in the wild using deep learning |
author |
Schofield, Daniel |
author_facet |
Schofield, Daniel Nagrani, Arsha Zisserman, Andrew Hayashi, Misato Matsuzawa, Tetsuro Biro, Dora Carvalho, Susana |
author_role |
author |
author2 |
Nagrani, Arsha Zisserman, Andrew Hayashi, Misato Matsuzawa, Tetsuro Biro, Dora Carvalho, Susana |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Schofield, Daniel Nagrani, Arsha Zisserman, Andrew Hayashi, Misato Matsuzawa, Tetsuro Biro, Dora Carvalho, Susana |
dc.subject.por.fl_str_mv |
Animals Facial Recognition Female Male Pan troglodytes Video Recording |
topic |
Animals Facial Recognition Female Male Pan troglodytes Video Recording |
description |
Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/107366 http://hdl.handle.net/10316/107366 https://doi.org/10.1126/sciadv.aaw0736 |
url |
http://hdl.handle.net/10316/107366 https://doi.org/10.1126/sciadv.aaw0736 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2375-2548 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
American Association for the Advancement of Science |
publisher.none.fl_str_mv |
American Association for the Advancement of Science |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134123784142848 |