Chimpanzee face recognition from videos in the wild using deep learning

Detalhes bibliográficos
Autor(a) principal: Schofield, Daniel
Data de Publicação: 2019
Outros Autores: Nagrani, Arsha, Zisserman, Andrew, Hayashi, Misato, Matsuzawa, Tetsuro, Biro, Dora, Carvalho, Susana
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/107366
https://doi.org/10.1126/sciadv.aaw0736
Resumo: Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.
id RCAP_be4a09937e5faddb325e992d68a18828
oai_identifier_str oai:estudogeral.uc.pt:10316/107366
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Chimpanzee face recognition from videos in the wild using deep learningAnimalsFacial RecognitionFemaleMalePan troglodytesVideo RecordingVideo recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.American Association for the Advancement of Science2019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/107366http://hdl.handle.net/10316/107366https://doi.org/10.1126/sciadv.aaw0736eng2375-2548Schofield, DanielNagrani, ArshaZisserman, AndrewHayashi, MisatoMatsuzawa, TetsuroBiro, DoraCarvalho, Susanainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-06T09:40:28Zoai:estudogeral.uc.pt:10316/107366Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:43.851487Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Chimpanzee face recognition from videos in the wild using deep learning
title Chimpanzee face recognition from videos in the wild using deep learning
spellingShingle Chimpanzee face recognition from videos in the wild using deep learning
Schofield, Daniel
Animals
Facial Recognition
Female
Male
Pan troglodytes
Video Recording
title_short Chimpanzee face recognition from videos in the wild using deep learning
title_full Chimpanzee face recognition from videos in the wild using deep learning
title_fullStr Chimpanzee face recognition from videos in the wild using deep learning
title_full_unstemmed Chimpanzee face recognition from videos in the wild using deep learning
title_sort Chimpanzee face recognition from videos in the wild using deep learning
author Schofield, Daniel
author_facet Schofield, Daniel
Nagrani, Arsha
Zisserman, Andrew
Hayashi, Misato
Matsuzawa, Tetsuro
Biro, Dora
Carvalho, Susana
author_role author
author2 Nagrani, Arsha
Zisserman, Andrew
Hayashi, Misato
Matsuzawa, Tetsuro
Biro, Dora
Carvalho, Susana
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Schofield, Daniel
Nagrani, Arsha
Zisserman, Andrew
Hayashi, Misato
Matsuzawa, Tetsuro
Biro, Dora
Carvalho, Susana
dc.subject.por.fl_str_mv Animals
Facial Recognition
Female
Male
Pan troglodytes
Video Recording
topic Animals
Facial Recognition
Female
Male
Pan troglodytes
Video Recording
description Video recording is now ubiquitous in the study of animal behavior, but its analysis on a large scale is prohibited by the time and resources needed to manually process large volumes of data. We present a deep convolutional neural network (CNN) approach that provides a fully automated pipeline for face detection, tracking, and recognition of wild chimpanzees from long-term video records. In a 14-year dataset yielding 10 million face images from 23 individuals over 50 hours of footage, we obtained an overall accuracy of 92.5% for identity recognition and 96.2% for sex recognition. Using the identified faces, we generated co-occurrence matrices to trace changes in the social network structure of an aging population. The tools we developed enable easy processing and annotation of video datasets, including those from other species. Such automated analysis unveils the future potential of large-scale longitudinal video archives to address fundamental questions in behavior and conservation.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/107366
http://hdl.handle.net/10316/107366
https://doi.org/10.1126/sciadv.aaw0736
url http://hdl.handle.net/10316/107366
https://doi.org/10.1126/sciadv.aaw0736
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2375-2548
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Association for the Advancement of Science
publisher.none.fl_str_mv American Association for the Advancement of Science
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134123784142848