Combining Multiple Approaches to Predict the Degree of Nativeness
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/31072 |
Resumo: | Automatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasets |
id |
RCAP_76be43dbccf686afef5ef09394d20877 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/31072 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Combining Multiple Approaches to Predict the Degree of NativenessNativenessPhonotacticsGOPProsodyAutomatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasetsTechnische Universität BerlinRepositório da Universidade de LisboaRibeiro, EugénioFerreira, JaimeOlcoz, JuliaAbad, AlbertoMoniz, HelenaBatista, FernandoTrancoso, Isabel2018-01-28T10:03:44Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/31072engRibeiro, E., Ferreira, J., Olcoz, J., Abad, A., Moniz, H., Batista, F. & Trancoso, I. (2015) "Combining Multiple Approaches to Predict the Degree of Nativeness", in Interspeech 2015, Dresden, Germany.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:24:12Zoai:repositorio.ul.pt:10451/31072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:46:35.489198Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Combining Multiple Approaches to Predict the Degree of Nativeness |
title |
Combining Multiple Approaches to Predict the Degree of Nativeness |
spellingShingle |
Combining Multiple Approaches to Predict the Degree of Nativeness Ribeiro, Eugénio Nativeness Phonotactics GOP Prosody |
title_short |
Combining Multiple Approaches to Predict the Degree of Nativeness |
title_full |
Combining Multiple Approaches to Predict the Degree of Nativeness |
title_fullStr |
Combining Multiple Approaches to Predict the Degree of Nativeness |
title_full_unstemmed |
Combining Multiple Approaches to Predict the Degree of Nativeness |
title_sort |
Combining Multiple Approaches to Predict the Degree of Nativeness |
author |
Ribeiro, Eugénio |
author_facet |
Ribeiro, Eugénio Ferreira, Jaime Olcoz, Julia Abad, Alberto Moniz, Helena Batista, Fernando Trancoso, Isabel |
author_role |
author |
author2 |
Ferreira, Jaime Olcoz, Julia Abad, Alberto Moniz, Helena Batista, Fernando Trancoso, Isabel |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Ribeiro, Eugénio Ferreira, Jaime Olcoz, Julia Abad, Alberto Moniz, Helena Batista, Fernando Trancoso, Isabel |
dc.subject.por.fl_str_mv |
Nativeness Phonotactics GOP Prosody |
topic |
Nativeness Phonotactics GOP Prosody |
description |
Automatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasets |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2018-01-28T10:03:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/31072 |
url |
http://hdl.handle.net/10451/31072 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ribeiro, E., Ferreira, J., Olcoz, J., Abad, A., Moniz, H., Batista, F. & Trancoso, I. (2015) "Combining Multiple Approaches to Predict the Degree of Nativeness", in Interspeech 2015, Dresden, Germany. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Technische Universität Berlin |
publisher.none.fl_str_mv |
Technische Universität Berlin |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134390339502080 |