Combining Multiple Approaches to Predict the Degree of Nativeness

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Eugénio
Data de Publicação: 2015
Outros Autores: Ferreira, Jaime, Olcoz, Julia, Abad, Alberto, Moniz, Helena, Batista, Fernando, Trancoso, Isabel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/31072
Resumo: Automatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasets
id RCAP_76be43dbccf686afef5ef09394d20877
oai_identifier_str oai:repositorio.ul.pt:10451/31072
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Combining Multiple Approaches to Predict the Degree of NativenessNativenessPhonotacticsGOPProsodyAutomatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasetsTechnische Universität BerlinRepositório da Universidade de LisboaRibeiro, EugénioFerreira, JaimeOlcoz, JuliaAbad, AlbertoMoniz, HelenaBatista, FernandoTrancoso, Isabel2018-01-28T10:03:44Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/31072engRibeiro, E., Ferreira, J., Olcoz, J., Abad, A., Moniz, H., Batista, F. & Trancoso, I. (2015) "Combining Multiple Approaches to Predict the Degree of Nativeness", in Interspeech 2015, Dresden, Germany.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:24:12Zoai:repositorio.ul.pt:10451/31072Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:46:35.489198Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Combining Multiple Approaches to Predict the Degree of Nativeness
title Combining Multiple Approaches to Predict the Degree of Nativeness
spellingShingle Combining Multiple Approaches to Predict the Degree of Nativeness
Ribeiro, Eugénio
Nativeness
Phonotactics
GOP
Prosody
title_short Combining Multiple Approaches to Predict the Degree of Nativeness
title_full Combining Multiple Approaches to Predict the Degree of Nativeness
title_fullStr Combining Multiple Approaches to Predict the Degree of Nativeness
title_full_unstemmed Combining Multiple Approaches to Predict the Degree of Nativeness
title_sort Combining Multiple Approaches to Predict the Degree of Nativeness
author Ribeiro, Eugénio
author_facet Ribeiro, Eugénio
Ferreira, Jaime
Olcoz, Julia
Abad, Alberto
Moniz, Helena
Batista, Fernando
Trancoso, Isabel
author_role author
author2 Ferreira, Jaime
Olcoz, Julia
Abad, Alberto
Moniz, Helena
Batista, Fernando
Trancoso, Isabel
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Ribeiro, Eugénio
Ferreira, Jaime
Olcoz, Julia
Abad, Alberto
Moniz, Helena
Batista, Fernando
Trancoso, Isabel
dc.subject.por.fl_str_mv Nativeness
Phonotactics
GOP
Prosody
topic Nativeness
Phonotactics
GOP
Prosody
description Automatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasets
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
2018-01-28T10:03:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/31072
url http://hdl.handle.net/10451/31072
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ribeiro, E., Ferreira, J., Olcoz, J., Abad, A., Moniz, H., Batista, F. & Trancoso, I. (2015) "Combining Multiple Approaches to Predict the Degree of Nativeness", in Interspeech 2015, Dresden, Germany.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Technische Universität Berlin
publisher.none.fl_str_mv Technische Universität Berlin
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134390339502080