Optimal control of a heroin epidemic mathematical model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35176 |
Resumo: | A heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies. |
id |
RCAP_7856308932742cb992b4a81f8ca3f87e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35176 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Optimal control of a heroin epidemic mathematical modelHeroin epidemic mathematical modelStability analysisBehavioural changeOptimal controlA heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies.Taylor & Francis2022-11-14T14:17:03Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35176eng0233-193410.1080/02331934.2021.2009823Sowndarrajan, P. T.Shangerganesh, L.Debbouche, A.Torres, D. F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:35Zoai:ria.ua.pt:10773/35176Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:12.201155Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Optimal control of a heroin epidemic mathematical model |
title |
Optimal control of a heroin epidemic mathematical model |
spellingShingle |
Optimal control of a heroin epidemic mathematical model Sowndarrajan, P. T. Heroin epidemic mathematical model Stability analysis Behavioural change Optimal control |
title_short |
Optimal control of a heroin epidemic mathematical model |
title_full |
Optimal control of a heroin epidemic mathematical model |
title_fullStr |
Optimal control of a heroin epidemic mathematical model |
title_full_unstemmed |
Optimal control of a heroin epidemic mathematical model |
title_sort |
Optimal control of a heroin epidemic mathematical model |
author |
Sowndarrajan, P. T. |
author_facet |
Sowndarrajan, P. T. Shangerganesh, L. Debbouche, A. Torres, D. F. M. |
author_role |
author |
author2 |
Shangerganesh, L. Debbouche, A. Torres, D. F. M. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Sowndarrajan, P. T. Shangerganesh, L. Debbouche, A. Torres, D. F. M. |
dc.subject.por.fl_str_mv |
Heroin epidemic mathematical model Stability analysis Behavioural change Optimal control |
topic |
Heroin epidemic mathematical model Stability analysis Behavioural change Optimal control |
description |
A heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-14T14:17:03Z 2022-01-01T00:00:00Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35176 |
url |
http://hdl.handle.net/10773/35176 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0233-1934 10.1080/02331934.2021.2009823 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137717262483456 |