Optimal control of a heroin epidemic mathematical model

Detalhes bibliográficos
Autor(a) principal: Sowndarrajan, P. T.
Data de Publicação: 2022
Outros Autores: Shangerganesh, L., Debbouche, A., Torres, D. F. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/35176
Resumo: A heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies.
id RCAP_7856308932742cb992b4a81f8ca3f87e
oai_identifier_str oai:ria.ua.pt:10773/35176
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Optimal control of a heroin epidemic mathematical modelHeroin epidemic mathematical modelStability analysisBehavioural changeOptimal controlA heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies.Taylor & Francis2022-11-14T14:17:03Z2022-01-01T00:00:00Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35176eng0233-193410.1080/02331934.2021.2009823Sowndarrajan, P. T.Shangerganesh, L.Debbouche, A.Torres, D. F. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:07:35Zoai:ria.ua.pt:10773/35176Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:12.201155Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Optimal control of a heroin epidemic mathematical model
title Optimal control of a heroin epidemic mathematical model
spellingShingle Optimal control of a heroin epidemic mathematical model
Sowndarrajan, P. T.
Heroin epidemic mathematical model
Stability analysis
Behavioural change
Optimal control
title_short Optimal control of a heroin epidemic mathematical model
title_full Optimal control of a heroin epidemic mathematical model
title_fullStr Optimal control of a heroin epidemic mathematical model
title_full_unstemmed Optimal control of a heroin epidemic mathematical model
title_sort Optimal control of a heroin epidemic mathematical model
author Sowndarrajan, P. T.
author_facet Sowndarrajan, P. T.
Shangerganesh, L.
Debbouche, A.
Torres, D. F. M.
author_role author
author2 Shangerganesh, L.
Debbouche, A.
Torres, D. F. M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Sowndarrajan, P. T.
Shangerganesh, L.
Debbouche, A.
Torres, D. F. M.
dc.subject.por.fl_str_mv Heroin epidemic mathematical model
Stability analysis
Behavioural change
Optimal control
topic Heroin epidemic mathematical model
Stability analysis
Behavioural change
Optimal control
description A heroin epidemic mathematical model with prevention information and treatment, as control interventions, is analyzed, assuming that an individual's behavioral response depends on the spreading of information about the effects of heroin. Such information creates awareness, which helps individuals to participate in preventive education and self-protective schemes with additional efforts. We prove that the basic reproduction number is the threshold of local stability of a drug-free and endemic equilibrium. Then, we formulate an optimal control problem to minimize the total number of drug users and the cost associated with prevention education measures and treatment. We prove existence of an optimal control and derive its characterization through Pontryagin's maximum principle. The resulting optimality system is solved numerically. We observe that among all possible strategies, the most effective and cost-less is to implement both control policies.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-14T14:17:03Z
2022-01-01T00:00:00Z
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/35176
url http://hdl.handle.net/10773/35176
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0233-1934
10.1080/02331934.2021.2009823
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137717262483456