Covariate measurement error : bias reduction under response-based sampling

Detalhes bibliográficos
Autor(a) principal: Ramalho, Esmeralda A.
Data de Publicação: 2009
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/29321
Resumo: In this paper we propose a general framework to deal with the presence of covariate measurement error (CME) in response-based (RB) samples. Using Chesher’s (1991) methodology, we obtain a small error variance approximation for the contaminated sampling distributions that characterise RB samples with CME. Then, following Chesher (2000), we develop generalised method of moments (GMM) estimators that reduce the bias of the most well known likelihood-based estimators for RB samples which ignore the existence of CME and derive a score test to detect the presence of this type of measurement error. Our approach only requires the specification of the conditional distribution of the response variable given the latent covariates and the classical additive measurement error model assumption, the availability of information on both the marginal probability of the strata in the population and the variance of the measurement error not being essential. Monte Carlo evidence is presented which suggests that, in RB samples of moderate sizes, the bias-reduced GMM estimators perform well
id RCAP_78d42770056481130773710014e53f97
oai_identifier_str oai:www.repository.utl.pt:10400.5/29321
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Covariate measurement error : bias reduction under response-based samplingResponse-Based SamplesCovariate Measurement ErrorGeneralized Method of Moments EstimationScore TestsIn this paper we propose a general framework to deal with the presence of covariate measurement error (CME) in response-based (RB) samples. Using Chesher’s (1991) methodology, we obtain a small error variance approximation for the contaminated sampling distributions that characterise RB samples with CME. Then, following Chesher (2000), we develop generalised method of moments (GMM) estimators that reduce the bias of the most well known likelihood-based estimators for RB samples which ignore the existence of CME and derive a score test to detect the presence of this type of measurement error. Our approach only requires the specification of the conditional distribution of the response variable given the latent covariates and the classical additive measurement error model assumption, the availability of information on both the marginal probability of the strata in the population and the variance of the measurement error not being essential. Monte Carlo evidence is presented which suggests that, in RB samples of moderate sizes, the bias-reduced GMM estimators perform wellCEFAGE-UE | Universidade de ÉvoraRepositório da Universidade de LisboaRamalho, Esmeralda A.2023-11-07T14:50:47Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/29321engRamalho, Esmeralda A.; .(2009). “Covariate measurement error : bias reduction under response-based sampling”. CEFAGE-EU, Working Paper Nº. 15/2009. (Search PDF in 2023)info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-12T01:31:43Zoai:www.repository.utl.pt:10400.5/29321Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:37:59.245914Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Covariate measurement error : bias reduction under response-based sampling
title Covariate measurement error : bias reduction under response-based sampling
spellingShingle Covariate measurement error : bias reduction under response-based sampling
Ramalho, Esmeralda A.
Response-Based Samples
Covariate Measurement Error
Generalized Method of Moments Estimation
Score Tests
title_short Covariate measurement error : bias reduction under response-based sampling
title_full Covariate measurement error : bias reduction under response-based sampling
title_fullStr Covariate measurement error : bias reduction under response-based sampling
title_full_unstemmed Covariate measurement error : bias reduction under response-based sampling
title_sort Covariate measurement error : bias reduction under response-based sampling
author Ramalho, Esmeralda A.
author_facet Ramalho, Esmeralda A.
author_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Ramalho, Esmeralda A.
dc.subject.por.fl_str_mv Response-Based Samples
Covariate Measurement Error
Generalized Method of Moments Estimation
Score Tests
topic Response-Based Samples
Covariate Measurement Error
Generalized Method of Moments Estimation
Score Tests
description In this paper we propose a general framework to deal with the presence of covariate measurement error (CME) in response-based (RB) samples. Using Chesher’s (1991) methodology, we obtain a small error variance approximation for the contaminated sampling distributions that characterise RB samples with CME. Then, following Chesher (2000), we develop generalised method of moments (GMM) estimators that reduce the bias of the most well known likelihood-based estimators for RB samples which ignore the existence of CME and derive a score test to detect the presence of this type of measurement error. Our approach only requires the specification of the conditional distribution of the response variable given the latent covariates and the classical additive measurement error model assumption, the availability of information on both the marginal probability of the strata in the population and the variance of the measurement error not being essential. Monte Carlo evidence is presented which suggests that, in RB samples of moderate sizes, the bias-reduced GMM estimators perform well
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
2023-11-07T14:50:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/29321
url http://hdl.handle.net/10400.5/29321
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ramalho, Esmeralda A.; .(2009). “Covariate measurement error : bias reduction under response-based sampling”. CEFAGE-EU, Working Paper Nº. 15/2009. (Search PDF in 2023)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CEFAGE-UE | Universidade de Évora
publisher.none.fl_str_mv CEFAGE-UE | Universidade de Évora
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134938788790272