Covariate measurement error : bias reduction under response-based sampling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/29321 |
Resumo: | In this paper we propose a general framework to deal with the presence of covariate measurement error (CME) in response-based (RB) samples. Using Chesher’s (1991) methodology, we obtain a small error variance approximation for the contaminated sampling distributions that characterise RB samples with CME. Then, following Chesher (2000), we develop generalised method of moments (GMM) estimators that reduce the bias of the most well known likelihood-based estimators for RB samples which ignore the existence of CME and derive a score test to detect the presence of this type of measurement error. Our approach only requires the specification of the conditional distribution of the response variable given the latent covariates and the classical additive measurement error model assumption, the availability of information on both the marginal probability of the strata in the population and the variance of the measurement error not being essential. Monte Carlo evidence is presented which suggests that, in RB samples of moderate sizes, the bias-reduced GMM estimators perform well |
id |
RCAP_78d42770056481130773710014e53f97 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/29321 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Covariate measurement error : bias reduction under response-based samplingResponse-Based SamplesCovariate Measurement ErrorGeneralized Method of Moments EstimationScore TestsIn this paper we propose a general framework to deal with the presence of covariate measurement error (CME) in response-based (RB) samples. Using Chesher’s (1991) methodology, we obtain a small error variance approximation for the contaminated sampling distributions that characterise RB samples with CME. Then, following Chesher (2000), we develop generalised method of moments (GMM) estimators that reduce the bias of the most well known likelihood-based estimators for RB samples which ignore the existence of CME and derive a score test to detect the presence of this type of measurement error. Our approach only requires the specification of the conditional distribution of the response variable given the latent covariates and the classical additive measurement error model assumption, the availability of information on both the marginal probability of the strata in the population and the variance of the measurement error not being essential. Monte Carlo evidence is presented which suggests that, in RB samples of moderate sizes, the bias-reduced GMM estimators perform wellCEFAGE-UE | Universidade de ÉvoraRepositório da Universidade de LisboaRamalho, Esmeralda A.2023-11-07T14:50:47Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/29321engRamalho, Esmeralda A.; .(2009). “Covariate measurement error : bias reduction under response-based sampling”. CEFAGE-EU, Working Paper Nº. 15/2009. (Search PDF in 2023)info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-12T01:31:43Zoai:www.repository.utl.pt:10400.5/29321Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:37:59.245914Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Covariate measurement error : bias reduction under response-based sampling |
title |
Covariate measurement error : bias reduction under response-based sampling |
spellingShingle |
Covariate measurement error : bias reduction under response-based sampling Ramalho, Esmeralda A. Response-Based Samples Covariate Measurement Error Generalized Method of Moments Estimation Score Tests |
title_short |
Covariate measurement error : bias reduction under response-based sampling |
title_full |
Covariate measurement error : bias reduction under response-based sampling |
title_fullStr |
Covariate measurement error : bias reduction under response-based sampling |
title_full_unstemmed |
Covariate measurement error : bias reduction under response-based sampling |
title_sort |
Covariate measurement error : bias reduction under response-based sampling |
author |
Ramalho, Esmeralda A. |
author_facet |
Ramalho, Esmeralda A. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Ramalho, Esmeralda A. |
dc.subject.por.fl_str_mv |
Response-Based Samples Covariate Measurement Error Generalized Method of Moments Estimation Score Tests |
topic |
Response-Based Samples Covariate Measurement Error Generalized Method of Moments Estimation Score Tests |
description |
In this paper we propose a general framework to deal with the presence of covariate measurement error (CME) in response-based (RB) samples. Using Chesher’s (1991) methodology, we obtain a small error variance approximation for the contaminated sampling distributions that characterise RB samples with CME. Then, following Chesher (2000), we develop generalised method of moments (GMM) estimators that reduce the bias of the most well known likelihood-based estimators for RB samples which ignore the existence of CME and derive a score test to detect the presence of this type of measurement error. Our approach only requires the specification of the conditional distribution of the response variable given the latent covariates and the classical additive measurement error model assumption, the availability of information on both the marginal probability of the strata in the population and the variance of the measurement error not being essential. Monte Carlo evidence is presented which suggests that, in RB samples of moderate sizes, the bias-reduced GMM estimators perform well |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2023-11-07T14:50:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/29321 |
url |
http://hdl.handle.net/10400.5/29321 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ramalho, Esmeralda A.; .(2009). “Covariate measurement error : bias reduction under response-based sampling”. CEFAGE-EU, Working Paper Nº. 15/2009. (Search PDF in 2023) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CEFAGE-UE | Universidade de Évora |
publisher.none.fl_str_mv |
CEFAGE-UE | Universidade de Évora |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134938788790272 |