Ensemble SGE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/43375 |
Resumo: | Este documento diz respeito a um projeto de investigação que decorreu no âmbito de projeto de final de curso do Mestrado em Informática e Sistemas, ramo de Tecnologias de Informação e Conhecimento que decorreu no Instituto Superior de Engenharia de Coimbra. Está integrado na área da aprendizagem automática e tem como principal objetivo desenvolver uma nova framework suportada pelo SGE para resolver problemas de aprendizagem supervisionada, e tem o nome de Ensemble SGE. O Ensemble SGE, utiliza o SGE que é um algoritmo de evolução automática de programas, para gerar vários modelos capazes de resolver um problema. E posteriormente utiliza técnicas de aprendizagem por Ensemble para agregar alguns dos modelos gerados e produzir um Ensemble. Neste trabalho foram abordados 3 problemas de regressão simbólica. Duas aproximações a funções conhecidas, polinómio de quarto grau e o polinómio de Pagie e por fim Boston Housing, um problema em que dadas características de uma casa é necessário prever o seu preço. Os resultados deste projeto são positivos, é demonstrado que é possível obter Ensembles capazes de resolver alguns problemas de uma melhor forma, que o melhor modelo gerado pelo SGE. A performance obtida pela utilização de Ensembles é maior comparativamente a modelos simples gerados pelo SGE. A framework foi implementada e disponibilizada com possíveis casos de teste. Concluindo, a escolha dos modelos constituintes do Ensemble é a decisão mais importante, pois não foi encontrada nenhuma maneira exata de o fazer, ou seja, apenas por métodos experimentais. O Ensemble SGE também consegue detetar situações de overfitting mais cedo que o melhor modelo do SGE ao longo das gerações. Isto porque o Ensemble SGE utiliza vários indivíduos de uma população. |
id |
RCAP_7a7424e04bb605a4bd274b605894a2a2 |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/43375 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Ensemble SGEAprendizagem automáticaAprendizagem supervisionadaProgramação genéticaEvolução gramaticalSGEAprendizagem por ensembleEste documento diz respeito a um projeto de investigação que decorreu no âmbito de projeto de final de curso do Mestrado em Informática e Sistemas, ramo de Tecnologias de Informação e Conhecimento que decorreu no Instituto Superior de Engenharia de Coimbra. Está integrado na área da aprendizagem automática e tem como principal objetivo desenvolver uma nova framework suportada pelo SGE para resolver problemas de aprendizagem supervisionada, e tem o nome de Ensemble SGE. O Ensemble SGE, utiliza o SGE que é um algoritmo de evolução automática de programas, para gerar vários modelos capazes de resolver um problema. E posteriormente utiliza técnicas de aprendizagem por Ensemble para agregar alguns dos modelos gerados e produzir um Ensemble. Neste trabalho foram abordados 3 problemas de regressão simbólica. Duas aproximações a funções conhecidas, polinómio de quarto grau e o polinómio de Pagie e por fim Boston Housing, um problema em que dadas características de uma casa é necessário prever o seu preço. Os resultados deste projeto são positivos, é demonstrado que é possível obter Ensembles capazes de resolver alguns problemas de uma melhor forma, que o melhor modelo gerado pelo SGE. A performance obtida pela utilização de Ensembles é maior comparativamente a modelos simples gerados pelo SGE. A framework foi implementada e disponibilizada com possíveis casos de teste. Concluindo, a escolha dos modelos constituintes do Ensemble é a decisão mais importante, pois não foi encontrada nenhuma maneira exata de o fazer, ou seja, apenas por métodos experimentais. O Ensemble SGE também consegue detetar situações de overfitting mais cedo que o melhor modelo do SGE ao longo das gerações. Isto porque o Ensemble SGE utiliza vários indivíduos de uma população.FEDER - Operational Programme Competitiveness Factors - COMPETE e fundos nacionais da FCT (POCI-01-0145-FEDER-029207).Pereira, Francisco José BaptistaLourenço, Nuno António MarquesRepositório ComumAbreu, Rui Manuel Rodrigues2023-01-26T11:18:48Z2021-12-062021-07-302021-12-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.26/43375TID:203003578porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-06-25T16:07:11Zoai:comum.rcaap.pt:10400.26/43375Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-06-25T16:07:11Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Ensemble SGE |
title |
Ensemble SGE |
spellingShingle |
Ensemble SGE Abreu, Rui Manuel Rodrigues Aprendizagem automática Aprendizagem supervisionada Programação genética Evolução gramatical SGE Aprendizagem por ensemble |
title_short |
Ensemble SGE |
title_full |
Ensemble SGE |
title_fullStr |
Ensemble SGE |
title_full_unstemmed |
Ensemble SGE |
title_sort |
Ensemble SGE |
author |
Abreu, Rui Manuel Rodrigues |
author_facet |
Abreu, Rui Manuel Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pereira, Francisco José Baptista Lourenço, Nuno António Marques Repositório Comum |
dc.contributor.author.fl_str_mv |
Abreu, Rui Manuel Rodrigues |
dc.subject.por.fl_str_mv |
Aprendizagem automática Aprendizagem supervisionada Programação genética Evolução gramatical SGE Aprendizagem por ensemble |
topic |
Aprendizagem automática Aprendizagem supervisionada Programação genética Evolução gramatical SGE Aprendizagem por ensemble |
description |
Este documento diz respeito a um projeto de investigação que decorreu no âmbito de projeto de final de curso do Mestrado em Informática e Sistemas, ramo de Tecnologias de Informação e Conhecimento que decorreu no Instituto Superior de Engenharia de Coimbra. Está integrado na área da aprendizagem automática e tem como principal objetivo desenvolver uma nova framework suportada pelo SGE para resolver problemas de aprendizagem supervisionada, e tem o nome de Ensemble SGE. O Ensemble SGE, utiliza o SGE que é um algoritmo de evolução automática de programas, para gerar vários modelos capazes de resolver um problema. E posteriormente utiliza técnicas de aprendizagem por Ensemble para agregar alguns dos modelos gerados e produzir um Ensemble. Neste trabalho foram abordados 3 problemas de regressão simbólica. Duas aproximações a funções conhecidas, polinómio de quarto grau e o polinómio de Pagie e por fim Boston Housing, um problema em que dadas características de uma casa é necessário prever o seu preço. Os resultados deste projeto são positivos, é demonstrado que é possível obter Ensembles capazes de resolver alguns problemas de uma melhor forma, que o melhor modelo gerado pelo SGE. A performance obtida pela utilização de Ensembles é maior comparativamente a modelos simples gerados pelo SGE. A framework foi implementada e disponibilizada com possíveis casos de teste. Concluindo, a escolha dos modelos constituintes do Ensemble é a decisão mais importante, pois não foi encontrada nenhuma maneira exata de o fazer, ou seja, apenas por métodos experimentais. O Ensemble SGE também consegue detetar situações de overfitting mais cedo que o melhor modelo do SGE ao longo das gerações. Isto porque o Ensemble SGE utiliza vários indivíduos de uma população. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-06 2021-07-30 2021-12-06T00:00:00Z 2023-01-26T11:18:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/43375 TID:203003578 |
url |
http://hdl.handle.net/10400.26/43375 |
identifier_str_mv |
TID:203003578 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546161625497600 |