Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/155362 |
Resumo: | Light management via photonic nanostructured coatings sustains a broad set of possible solar energy conversion enhancements, alternatively to conventional texturing processes that deteriorate solar cells (SCs) electrical transport through charge carrier recombination losses. These coatings, composed of high-refractive index materials structured at the sunlight wavelengths scale, can improve SCs efficiency, avoiding surface texturing processes while still allowing high-performance light trapping (LT). Here, through a highly scalable colloidal lithography methodology, proposed titanium dioxide (TiO2) nanovoid coatings were patterned on conventional (250 μm) and thin (90 μm) flat crystalline silicon (c-Si) wafers. These nanostructured coatings were also applied on textured (130 μm c-Si absorber), etched (140 μm) and flat (740 μm) c-Si interdigitated back contact solar cells (IBCSCs). The subsequent broadband absorption amplification was owing to the combined effects of (1) light scattering in near-infrared (NIR) wavelengths and (2) broad anti-reflection. With coated 250 μm c-Si wafers, a photocurrent density (ℎ) of 36.6 mA/cm2 was determined by absorption spectrum integration between 350 and 1200 nm. Approximately 84 % of the maximum theoretical ℎ Lambertian LT limit is here attained with 669 and 693 nm of TiO2 thin photonic nanostructured coatings, respectively with the considered conventional and thin c-Si wafers. When integrated into test devices, outstanding optical improvements are attained without diminishing the original electrical performance by applying coatings with TiO2 thicknesses ≥ 545 nm. Unprecedent ~30 % of efficiency enhancement and 31.9 mA/cm2 of short-circuit current density () are demonstrated with etched IBCSCs coated with 885 nm of TiO2 nanostructured coating. Additionally, unmatched optical angular acceptance is shown: 63 % of efficiency and 68 % of enhancements are respectively exhibited with 545 and 885 nm of TiO2 coatings for 80° of light incidence angle. Hence, with straightforward near-future integration in the established industry, a highly promising path for c-Si photovoltaic improvement is entailed. |
id |
RCAP_7b775253ed2715f2dfb745507f2bb1ed |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/155362 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Light Management in Crystalline Silicon Solar Cells with Photonic NanocoatingsPhotovoltaicsLight ManagementColloidal LithographyCrystalline SiliconSolar CellsPhotonic Nanostructured CoatingsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos MateriaisLight management via photonic nanostructured coatings sustains a broad set of possible solar energy conversion enhancements, alternatively to conventional texturing processes that deteriorate solar cells (SCs) electrical transport through charge carrier recombination losses. These coatings, composed of high-refractive index materials structured at the sunlight wavelengths scale, can improve SCs efficiency, avoiding surface texturing processes while still allowing high-performance light trapping (LT). Here, through a highly scalable colloidal lithography methodology, proposed titanium dioxide (TiO2) nanovoid coatings were patterned on conventional (250 μm) and thin (90 μm) flat crystalline silicon (c-Si) wafers. These nanostructured coatings were also applied on textured (130 μm c-Si absorber), etched (140 μm) and flat (740 μm) c-Si interdigitated back contact solar cells (IBCSCs). The subsequent broadband absorption amplification was owing to the combined effects of (1) light scattering in near-infrared (NIR) wavelengths and (2) broad anti-reflection. With coated 250 μm c-Si wafers, a photocurrent density (ℎ) of 36.6 mA/cm2 was determined by absorption spectrum integration between 350 and 1200 nm. Approximately 84 % of the maximum theoretical ℎ Lambertian LT limit is here attained with 669 and 693 nm of TiO2 thin photonic nanostructured coatings, respectively with the considered conventional and thin c-Si wafers. When integrated into test devices, outstanding optical improvements are attained without diminishing the original electrical performance by applying coatings with TiO2 thicknesses ≥ 545 nm. Unprecedent ~30 % of efficiency enhancement and 31.9 mA/cm2 of short-circuit current density () are demonstrated with etched IBCSCs coated with 885 nm of TiO2 nanostructured coating. Additionally, unmatched optical angular acceptance is shown: 63 % of efficiency and 68 % of enhancements are respectively exhibited with 545 and 885 nm of TiO2 coatings for 80° of light incidence angle. Hence, with straightforward near-future integration in the established industry, a highly promising path for c-Si photovoltaic improvement is entailed.A gestão de luz mediante o uso de revestimentos nanoestruturados fotónicos sustenta um vasto leque de possíveis melhorias de conversão de energia solar, alternativamente a processos convencionais de texturização que deterioram o transporte eléctrico de células solares (CSs). Estes, compostos por materiais de elevado índice de refracção, podem elevar a eficiência de CSs, evitando texturizações enquanto possibilitam a captura de luz de elevado desempenho. Matrizes de nanocavidades de dióxido de titânio (TiO2) foram padronizadas por uma metodologia altamente escalável de litografia coloidal em bolachas de silício cristalino (c-Si) plano convencionais (250 μm) e finas (90 μm) e em CSs de contactos posteriores interdigitados (IBCSCs) texturizadas (130 μm c-Si), erodidas (140 μm) e planas (740 μm). A subsequente amplificação extensa da absorção deve-se à combinação dos seguintes efeitos: (1) dispersão de luz para comprimentos de onda do infravermelho próximo e (2) antirreflexão ampla. Com bolachas de c-Si convencionais, uma densidade de fotocorrente (ℎ) de 36.6 mA/cm2 determinada pela integração da absortância (350-1200 nm) foi conseguida. Aproximadamente 84 % do limite máximo teórico Lambertiano foi atingido com bolachas convencionais e finas revestidas com 792 e 693 nm de TiO2 nanoestruturado, respetivamente. Quando integrados em dispositivos de teste, a aplicação desses revestimentos com espessuras de TiO2 ≥ 545 nm conduziu a uma melhoria ótica substancial sem diminuir o desempenho elétrico original. Um aumento de ~30 % de eficiência e 31,9 mA/cm2 de densidade de corrente de curto-circuito () são apresentados com IBCSCs revestidas com 885 nm de TiO2 nanoestruturado. É ainda demonstrada uma aceitação angular ótica incomparável: ganhos de 63 % de eficiência e 68 % de , respetivamente com revestimentos de 545 e 885 nm de TiO2 nanoestruturado para um ângulo de luz incidente de 80°. Assim, com uma integração num futuro próximo na indústria, um caminho promissor para a evolução fotovoltaica em c-Si é implicado.Mendes, ManuelMouquinho, AnaRUNSantos, Ivan Miranda2023-07-17T10:53:51Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155362enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:13:00Zoai:run.unl.pt:10362/155362Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:13Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
title |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
spellingShingle |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings Santos, Ivan Miranda Photovoltaics Light Management Colloidal Lithography Crystalline Silicon Solar Cells Photonic Nanostructured Coatings Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais |
title_short |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
title_full |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
title_fullStr |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
title_full_unstemmed |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
title_sort |
Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings |
author |
Santos, Ivan Miranda |
author_facet |
Santos, Ivan Miranda |
author_role |
author |
dc.contributor.none.fl_str_mv |
Mendes, Manuel Mouquinho, Ana RUN |
dc.contributor.author.fl_str_mv |
Santos, Ivan Miranda |
dc.subject.por.fl_str_mv |
Photovoltaics Light Management Colloidal Lithography Crystalline Silicon Solar Cells Photonic Nanostructured Coatings Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais |
topic |
Photovoltaics Light Management Colloidal Lithography Crystalline Silicon Solar Cells Photonic Nanostructured Coatings Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais |
description |
Light management via photonic nanostructured coatings sustains a broad set of possible solar energy conversion enhancements, alternatively to conventional texturing processes that deteriorate solar cells (SCs) electrical transport through charge carrier recombination losses. These coatings, composed of high-refractive index materials structured at the sunlight wavelengths scale, can improve SCs efficiency, avoiding surface texturing processes while still allowing high-performance light trapping (LT). Here, through a highly scalable colloidal lithography methodology, proposed titanium dioxide (TiO2) nanovoid coatings were patterned on conventional (250 μm) and thin (90 μm) flat crystalline silicon (c-Si) wafers. These nanostructured coatings were also applied on textured (130 μm c-Si absorber), etched (140 μm) and flat (740 μm) c-Si interdigitated back contact solar cells (IBCSCs). The subsequent broadband absorption amplification was owing to the combined effects of (1) light scattering in near-infrared (NIR) wavelengths and (2) broad anti-reflection. With coated 250 μm c-Si wafers, a photocurrent density (ℎ) of 36.6 mA/cm2 was determined by absorption spectrum integration between 350 and 1200 nm. Approximately 84 % of the maximum theoretical ℎ Lambertian LT limit is here attained with 669 and 693 nm of TiO2 thin photonic nanostructured coatings, respectively with the considered conventional and thin c-Si wafers. When integrated into test devices, outstanding optical improvements are attained without diminishing the original electrical performance by applying coatings with TiO2 thicknesses ≥ 545 nm. Unprecedent ~30 % of efficiency enhancement and 31.9 mA/cm2 of short-circuit current density () are demonstrated with etched IBCSCs coated with 885 nm of TiO2 nanostructured coating. Additionally, unmatched optical angular acceptance is shown: 63 % of efficiency and 68 % of enhancements are respectively exhibited with 545 and 885 nm of TiO2 coatings for 80° of light incidence angle. Hence, with straightforward near-future integration in the established industry, a highly promising path for c-Si photovoltaic improvement is entailed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z 2023-07-17T10:53:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/155362 |
url |
http://hdl.handle.net/10362/155362 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545945266520064 |