Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings

Detalhes bibliográficos
Autor(a) principal: Santos, Ivan Miranda
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/155362
Resumo: Light management via photonic nanostructured coatings sustains a broad set of possible solar energy conversion enhancements, alternatively to conventional texturing processes that deteriorate solar cells (SCs) electrical transport through charge carrier recombination losses. These coatings, composed of high-refractive index materials structured at the sunlight wavelengths scale, can improve SCs efficiency, avoiding surface texturing processes while still allowing high-performance light trapping (LT). Here, through a highly scalable colloidal lithography methodology, proposed titanium dioxide (TiO2) nanovoid coatings were patterned on conventional (250 μm) and thin (90 μm) flat crystalline silicon (c-Si) wafers. These nanostructured coatings were also applied on textured (130 μm c-Si absorber), etched (140 μm) and flat (740 μm) c-Si interdigitated back contact solar cells (IBCSCs). The subsequent broadband absorption amplification was owing to the combined effects of (1) light scattering in near-infrared (NIR) wavelengths and (2) broad anti-reflection. With coated 250 μm c-Si wafers, a photocurrent density (ℎ) of 36.6 mA/cm2 was determined by absorption spectrum integration between 350 and 1200 nm. Approximately 84 % of the maximum theoretical ℎ Lambertian LT limit is here attained with 669 and 693 nm of TiO2 thin photonic nanostructured coatings, respectively with the considered conventional and thin c-Si wafers. When integrated into test devices, outstanding optical improvements are attained without diminishing the original electrical performance by applying coatings with TiO2 thicknesses ≥ 545 nm. Unprecedent ~30 % of efficiency enhancement and 31.9 mA/cm2 of short-circuit current density () are demonstrated with etched IBCSCs coated with 885 nm of TiO2 nanostructured coating. Additionally, unmatched optical angular acceptance is shown: 63 % of efficiency and 68 % of enhancements are respectively exhibited with 545 and 885 nm of TiO2 coatings for 80° of light incidence angle. Hence, with straightforward near-future integration in the established industry, a highly promising path for c-Si photovoltaic improvement is entailed.
id RCAP_7b775253ed2715f2dfb745507f2bb1ed
oai_identifier_str oai:run.unl.pt:10362/155362
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Light Management in Crystalline Silicon Solar Cells with Photonic NanocoatingsPhotovoltaicsLight ManagementColloidal LithographyCrystalline SiliconSolar CellsPhotonic Nanostructured CoatingsDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos MateriaisLight management via photonic nanostructured coatings sustains a broad set of possible solar energy conversion enhancements, alternatively to conventional texturing processes that deteriorate solar cells (SCs) electrical transport through charge carrier recombination losses. These coatings, composed of high-refractive index materials structured at the sunlight wavelengths scale, can improve SCs efficiency, avoiding surface texturing processes while still allowing high-performance light trapping (LT). Here, through a highly scalable colloidal lithography methodology, proposed titanium dioxide (TiO2) nanovoid coatings were patterned on conventional (250 μm) and thin (90 μm) flat crystalline silicon (c-Si) wafers. These nanostructured coatings were also applied on textured (130 μm c-Si absorber), etched (140 μm) and flat (740 μm) c-Si interdigitated back contact solar cells (IBCSCs). The subsequent broadband absorption amplification was owing to the combined effects of (1) light scattering in near-infrared (NIR) wavelengths and (2) broad anti-reflection. With coated 250 μm c-Si wafers, a photocurrent density (ℎ) of 36.6 mA/cm2 was determined by absorption spectrum integration between 350 and 1200 nm. Approximately 84 % of the maximum theoretical ℎ Lambertian LT limit is here attained with 669 and 693 nm of TiO2 thin photonic nanostructured coatings, respectively with the considered conventional and thin c-Si wafers. When integrated into test devices, outstanding optical improvements are attained without diminishing the original electrical performance by applying coatings with TiO2 thicknesses ≥ 545 nm. Unprecedent ~30 % of efficiency enhancement and 31.9 mA/cm2 of short-circuit current density () are demonstrated with etched IBCSCs coated with 885 nm of TiO2 nanostructured coating. Additionally, unmatched optical angular acceptance is shown: 63 % of efficiency and 68 % of enhancements are respectively exhibited with 545 and 885 nm of TiO2 coatings for 80° of light incidence angle. Hence, with straightforward near-future integration in the established industry, a highly promising path for c-Si photovoltaic improvement is entailed.A gestão de luz mediante o uso de revestimentos nanoestruturados fotónicos sustenta um vasto leque de possíveis melhorias de conversão de energia solar, alternativamente a processos convencionais de texturização que deterioram o transporte eléctrico de células solares (CSs). Estes, compostos por materiais de elevado índice de refracção, podem elevar a eficiência de CSs, evitando texturizações enquanto possibilitam a captura de luz de elevado desempenho. Matrizes de nanocavidades de dióxido de titânio (TiO2) foram padronizadas por uma metodologia altamente escalável de litografia coloidal em bolachas de silício cristalino (c-Si) plano convencionais (250 μm) e finas (90 μm) e em CSs de contactos posteriores interdigitados (IBCSCs) texturizadas (130 μm c-Si), erodidas (140 μm) e planas (740 μm). A subsequente amplificação extensa da absorção deve-se à combinação dos seguintes efeitos: (1) dispersão de luz para comprimentos de onda do infravermelho próximo e (2) antirreflexão ampla. Com bolachas de c-Si convencionais, uma densidade de fotocorrente (ℎ) de 36.6 mA/cm2 determinada pela integração da absortância (350-1200 nm) foi conseguida. Aproximadamente 84 % do limite máximo teórico Lambertiano foi atingido com bolachas convencionais e finas revestidas com 792 e 693 nm de TiO2 nanoestruturado, respetivamente. Quando integrados em dispositivos de teste, a aplicação desses revestimentos com espessuras de TiO2 ≥ 545 nm conduziu a uma melhoria ótica substancial sem diminuir o desempenho elétrico original. Um aumento de ~30 % de eficiência e 31,9 mA/cm2 de densidade de corrente de curto-circuito () são apresentados com IBCSCs revestidas com 885 nm de TiO2 nanoestruturado. É ainda demonstrada uma aceitação angular ótica incomparável: ganhos de 63 % de eficiência e 68 % de , respetivamente com revestimentos de 545 e 885 nm de TiO2 nanoestruturado para um ângulo de luz incidente de 80°. Assim, com uma integração num futuro próximo na indústria, um caminho promissor para a evolução fotovoltaica em c-Si é implicado.Mendes, ManuelMouquinho, AnaRUNSantos, Ivan Miranda2023-07-17T10:53:51Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/155362enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:37:54Zoai:run.unl.pt:10362/155362Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:01.893494Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
title Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
spellingShingle Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
Santos, Ivan Miranda
Photovoltaics
Light Management
Colloidal Lithography
Crystalline Silicon
Solar Cells
Photonic Nanostructured Coatings
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
title_short Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
title_full Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
title_fullStr Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
title_full_unstemmed Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
title_sort Light Management in Crystalline Silicon Solar Cells with Photonic Nanocoatings
author Santos, Ivan Miranda
author_facet Santos, Ivan Miranda
author_role author
dc.contributor.none.fl_str_mv Mendes, Manuel
Mouquinho, Ana
RUN
dc.contributor.author.fl_str_mv Santos, Ivan Miranda
dc.subject.por.fl_str_mv Photovoltaics
Light Management
Colloidal Lithography
Crystalline Silicon
Solar Cells
Photonic Nanostructured Coatings
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
topic Photovoltaics
Light Management
Colloidal Lithography
Crystalline Silicon
Solar Cells
Photonic Nanostructured Coatings
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
description Light management via photonic nanostructured coatings sustains a broad set of possible solar energy conversion enhancements, alternatively to conventional texturing processes that deteriorate solar cells (SCs) electrical transport through charge carrier recombination losses. These coatings, composed of high-refractive index materials structured at the sunlight wavelengths scale, can improve SCs efficiency, avoiding surface texturing processes while still allowing high-performance light trapping (LT). Here, through a highly scalable colloidal lithography methodology, proposed titanium dioxide (TiO2) nanovoid coatings were patterned on conventional (250 μm) and thin (90 μm) flat crystalline silicon (c-Si) wafers. These nanostructured coatings were also applied on textured (130 μm c-Si absorber), etched (140 μm) and flat (740 μm) c-Si interdigitated back contact solar cells (IBCSCs). The subsequent broadband absorption amplification was owing to the combined effects of (1) light scattering in near-infrared (NIR) wavelengths and (2) broad anti-reflection. With coated 250 μm c-Si wafers, a photocurrent density (ℎ) of 36.6 mA/cm2 was determined by absorption spectrum integration between 350 and 1200 nm. Approximately 84 % of the maximum theoretical ℎ Lambertian LT limit is here attained with 669 and 693 nm of TiO2 thin photonic nanostructured coatings, respectively with the considered conventional and thin c-Si wafers. When integrated into test devices, outstanding optical improvements are attained without diminishing the original electrical performance by applying coatings with TiO2 thicknesses ≥ 545 nm. Unprecedent ~30 % of efficiency enhancement and 31.9 mA/cm2 of short-circuit current density () are demonstrated with etched IBCSCs coated with 885 nm of TiO2 nanostructured coating. Additionally, unmatched optical angular acceptance is shown: 63 % of efficiency and 68 % of enhancements are respectively exhibited with 545 and 885 nm of TiO2 coatings for 80° of light incidence angle. Hence, with straightforward near-future integration in the established industry, a highly promising path for c-Si photovoltaic improvement is entailed.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
2023-07-17T10:53:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/155362
url http://hdl.handle.net/10362/155362
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138146624995328