Locally conformal SKT structures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/82954 |
Resumo: | A Hermitian metric on a complex manifold is called SKT (strong K ̈ahler with torsion) if the Bismut torsion 3-form H is closed. As the conformal generalization of the SKT condition, we introduce a new type of Hermitian structure, called locally conformal SKT (or shortly LCSKT). More precisely, a Hermitian structure (J, g) is said to be LCSKT if there exists a closed nonzero 1-form α such that dH = α∧H. In this paper, we consider nontrivial LCSKT structures, i.e. we assume that dH ̸= 0 and we study their existence on Lie groups and their compact quotients by lattices. In particular, we classify six-dimensional nilpotent Lie algebras admitting a LCSKT structure and we show that, in contrast to the SKT case, there exists a six-dimensional 3- step nilpotent Lie algebra admitting a nontrivial LCSKT structure. Moreover, we show a characterization of even dimensional almost abelian Lie algebras admitting a nontrivial LCSKT structure, which allows us to construct explicit examples of six-dimensional unimodular almost abelian Lie algebras admitting a nontrivial LCSKT structure. The compatibility between the LCSKT and the balanced condition is also discussed, showing that a Hermitian structure on a six-dimensional nilpotent or a 2n-dimensional almost abelian Lie algebra cannot be simultaneously LCSKT and balanced, unless it is K ̈ahler. |
id |
RCAP_7bb2e3f3baa1f32e00e79322a1fe7a12 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/82954 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Locally conformal SKT structuresHermitian metricsLocally conformal SKT metricsNilpotent Lie algebrasAlmost abelian Lie algebrasCiências Naturais::MatemáticasScience & TechnologyA Hermitian metric on a complex manifold is called SKT (strong K ̈ahler with torsion) if the Bismut torsion 3-form H is closed. As the conformal generalization of the SKT condition, we introduce a new type of Hermitian structure, called locally conformal SKT (or shortly LCSKT). More precisely, a Hermitian structure (J, g) is said to be LCSKT if there exists a closed nonzero 1-form α such that dH = α∧H. In this paper, we consider nontrivial LCSKT structures, i.e. we assume that dH ̸= 0 and we study their existence on Lie groups and their compact quotients by lattices. In particular, we classify six-dimensional nilpotent Lie algebras admitting a LCSKT structure and we show that, in contrast to the SKT case, there exists a six-dimensional 3- step nilpotent Lie algebra admitting a nontrivial LCSKT structure. Moreover, we show a characterization of even dimensional almost abelian Lie algebras admitting a nontrivial LCSKT structure, which allows us to construct explicit examples of six-dimensional unimodular almost abelian Lie algebras admitting a nontrivial LCSKT structure. The compatibility between the LCSKT and the balanced condition is also discussed, showing that a Hermitian structure on a six-dimensional nilpotent or a 2n-dimensional almost abelian Lie algebra cannot be simultaneously LCSKT and balanced, unless it is K ̈ahler.By GNSAGA of INdAM, by the project PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics and by a grant from the Simons Foundation (#944448)World ScientificUniversidade do MinhoFerreira, Ana CristinaDjebbar, BachirFino, AnnaLarbi Youcef, Nourhane Zineb2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/82954engDjebbar, B., Ferreira, A. C., Fino, A., & Youcef, N. Z. L. (2022, December). Locally conformal SKT structures. International Journal of Mathematics. World Scientific Pub Co Pte Ltd. http://doi.org/10.1142/s0129167x225009260129-167X1793-651910.1142/S0129167X225009262250092https://www.worldscientific.com/doi/epdf/10.1142/S0129167X22500926info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-28T01:18:08Zoai:repositorium.sdum.uminho.pt:1822/82954Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:55:26.624073Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Locally conformal SKT structures |
title |
Locally conformal SKT structures |
spellingShingle |
Locally conformal SKT structures Ferreira, Ana Cristina Hermitian metrics Locally conformal SKT metrics Nilpotent Lie algebras Almost abelian Lie algebras Ciências Naturais::Matemáticas Science & Technology |
title_short |
Locally conformal SKT structures |
title_full |
Locally conformal SKT structures |
title_fullStr |
Locally conformal SKT structures |
title_full_unstemmed |
Locally conformal SKT structures |
title_sort |
Locally conformal SKT structures |
author |
Ferreira, Ana Cristina |
author_facet |
Ferreira, Ana Cristina Djebbar, Bachir Fino, Anna Larbi Youcef, Nourhane Zineb |
author_role |
author |
author2 |
Djebbar, Bachir Fino, Anna Larbi Youcef, Nourhane Zineb |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Ana Cristina Djebbar, Bachir Fino, Anna Larbi Youcef, Nourhane Zineb |
dc.subject.por.fl_str_mv |
Hermitian metrics Locally conformal SKT metrics Nilpotent Lie algebras Almost abelian Lie algebras Ciências Naturais::Matemáticas Science & Technology |
topic |
Hermitian metrics Locally conformal SKT metrics Nilpotent Lie algebras Almost abelian Lie algebras Ciências Naturais::Matemáticas Science & Technology |
description |
A Hermitian metric on a complex manifold is called SKT (strong K ̈ahler with torsion) if the Bismut torsion 3-form H is closed. As the conformal generalization of the SKT condition, we introduce a new type of Hermitian structure, called locally conformal SKT (or shortly LCSKT). More precisely, a Hermitian structure (J, g) is said to be LCSKT if there exists a closed nonzero 1-form α such that dH = α∧H. In this paper, we consider nontrivial LCSKT structures, i.e. we assume that dH ̸= 0 and we study their existence on Lie groups and their compact quotients by lattices. In particular, we classify six-dimensional nilpotent Lie algebras admitting a LCSKT structure and we show that, in contrast to the SKT case, there exists a six-dimensional 3- step nilpotent Lie algebra admitting a nontrivial LCSKT structure. Moreover, we show a characterization of even dimensional almost abelian Lie algebras admitting a nontrivial LCSKT structure, which allows us to construct explicit examples of six-dimensional unimodular almost abelian Lie algebras admitting a nontrivial LCSKT structure. The compatibility between the LCSKT and the balanced condition is also discussed, showing that a Hermitian structure on a six-dimensional nilpotent or a 2n-dimensional almost abelian Lie algebra cannot be simultaneously LCSKT and balanced, unless it is K ̈ahler. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/82954 |
url |
https://hdl.handle.net/1822/82954 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Djebbar, B., Ferreira, A. C., Fino, A., & Youcef, N. Z. L. (2022, December). Locally conformal SKT structures. International Journal of Mathematics. World Scientific Pub Co Pte Ltd. http://doi.org/10.1142/s0129167x22500926 0129-167X 1793-6519 10.1142/S0129167X22500926 2250092 https://www.worldscientific.com/doi/epdf/10.1142/S0129167X22500926 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132338815238145 |