Locally conformal SKT structures

Detalhes bibliográficos
Autor(a) principal: Ferreira, Ana Cristina
Data de Publicação: 2022
Outros Autores: Djebbar, Bachir, Fino, Anna, Larbi Youcef, Nourhane Zineb
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/82954
Resumo: A Hermitian metric on a complex manifold is called SKT (strong K ̈ahler with torsion) if the Bismut torsion 3-form H is closed. As the conformal generalization of the SKT condition, we introduce a new type of Hermitian structure, called locally conformal SKT (or shortly LCSKT). More precisely, a Hermitian structure (J, g) is said to be LCSKT if there exists a closed nonzero 1-form α such that dH = α∧H. In this paper, we consider nontrivial LCSKT structures, i.e. we assume that dH ̸= 0 and we study their existence on Lie groups and their compact quotients by lattices. In particular, we classify six-dimensional nilpotent Lie algebras admitting a LCSKT structure and we show that, in contrast to the SKT case, there exists a six-dimensional 3- step nilpotent Lie algebra admitting a nontrivial LCSKT structure. Moreover, we show a characterization of even dimensional almost abelian Lie algebras admitting a nontrivial LCSKT structure, which allows us to construct explicit examples of six-dimensional unimodular almost abelian Lie algebras admitting a nontrivial LCSKT structure. The compatibility between the LCSKT and the balanced condition is also discussed, showing that a Hermitian structure on a six-dimensional nilpotent or a 2n-dimensional almost abelian Lie algebra cannot be simultaneously LCSKT and balanced, unless it is K ̈ahler.
id RCAP_7bb2e3f3baa1f32e00e79322a1fe7a12
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/82954
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Locally conformal SKT structuresHermitian metricsLocally conformal SKT metricsNilpotent Lie algebrasAlmost abelian Lie algebrasCiências Naturais::MatemáticasScience & TechnologyA Hermitian metric on a complex manifold is called SKT (strong K ̈ahler with torsion) if the Bismut torsion 3-form H is closed. As the conformal generalization of the SKT condition, we introduce a new type of Hermitian structure, called locally conformal SKT (or shortly LCSKT). More precisely, a Hermitian structure (J, g) is said to be LCSKT if there exists a closed nonzero 1-form α such that dH = α∧H. In this paper, we consider nontrivial LCSKT structures, i.e. we assume that dH ̸= 0 and we study their existence on Lie groups and their compact quotients by lattices. In particular, we classify six-dimensional nilpotent Lie algebras admitting a LCSKT structure and we show that, in contrast to the SKT case, there exists a six-dimensional 3- step nilpotent Lie algebra admitting a nontrivial LCSKT structure. Moreover, we show a characterization of even dimensional almost abelian Lie algebras admitting a nontrivial LCSKT structure, which allows us to construct explicit examples of six-dimensional unimodular almost abelian Lie algebras admitting a nontrivial LCSKT structure. The compatibility between the LCSKT and the balanced condition is also discussed, showing that a Hermitian structure on a six-dimensional nilpotent or a 2n-dimensional almost abelian Lie algebra cannot be simultaneously LCSKT and balanced, unless it is K ̈ahler.By GNSAGA of INdAM, by the project PRIN 2017 “Real and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics and by a grant from the Simons Foundation (#944448)World ScientificUniversidade do MinhoFerreira, Ana CristinaDjebbar, BachirFino, AnnaLarbi Youcef, Nourhane Zineb2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/82954engDjebbar, B., Ferreira, A. C., Fino, A., & Youcef, N. Z. L. (2022, December). Locally conformal SKT structures. International Journal of Mathematics. World Scientific Pub Co Pte Ltd. http://doi.org/10.1142/s0129167x225009260129-167X1793-651910.1142/S0129167X225009262250092https://www.worldscientific.com/doi/epdf/10.1142/S0129167X22500926info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-10-28T01:18:08Zoai:repositorium.sdum.uminho.pt:1822/82954Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:55:26.624073Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Locally conformal SKT structures
title Locally conformal SKT structures
spellingShingle Locally conformal SKT structures
Ferreira, Ana Cristina
Hermitian metrics
Locally conformal SKT metrics
Nilpotent Lie algebras
Almost abelian Lie algebras
Ciências Naturais::Matemáticas
Science & Technology
title_short Locally conformal SKT structures
title_full Locally conformal SKT structures
title_fullStr Locally conformal SKT structures
title_full_unstemmed Locally conformal SKT structures
title_sort Locally conformal SKT structures
author Ferreira, Ana Cristina
author_facet Ferreira, Ana Cristina
Djebbar, Bachir
Fino, Anna
Larbi Youcef, Nourhane Zineb
author_role author
author2 Djebbar, Bachir
Fino, Anna
Larbi Youcef, Nourhane Zineb
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ferreira, Ana Cristina
Djebbar, Bachir
Fino, Anna
Larbi Youcef, Nourhane Zineb
dc.subject.por.fl_str_mv Hermitian metrics
Locally conformal SKT metrics
Nilpotent Lie algebras
Almost abelian Lie algebras
Ciências Naturais::Matemáticas
Science & Technology
topic Hermitian metrics
Locally conformal SKT metrics
Nilpotent Lie algebras
Almost abelian Lie algebras
Ciências Naturais::Matemáticas
Science & Technology
description A Hermitian metric on a complex manifold is called SKT (strong K ̈ahler with torsion) if the Bismut torsion 3-form H is closed. As the conformal generalization of the SKT condition, we introduce a new type of Hermitian structure, called locally conformal SKT (or shortly LCSKT). More precisely, a Hermitian structure (J, g) is said to be LCSKT if there exists a closed nonzero 1-form α such that dH = α∧H. In this paper, we consider nontrivial LCSKT structures, i.e. we assume that dH ̸= 0 and we study their existence on Lie groups and their compact quotients by lattices. In particular, we classify six-dimensional nilpotent Lie algebras admitting a LCSKT structure and we show that, in contrast to the SKT case, there exists a six-dimensional 3- step nilpotent Lie algebra admitting a nontrivial LCSKT structure. Moreover, we show a characterization of even dimensional almost abelian Lie algebras admitting a nontrivial LCSKT structure, which allows us to construct explicit examples of six-dimensional unimodular almost abelian Lie algebras admitting a nontrivial LCSKT structure. The compatibility between the LCSKT and the balanced condition is also discussed, showing that a Hermitian structure on a six-dimensional nilpotent or a 2n-dimensional almost abelian Lie algebra cannot be simultaneously LCSKT and balanced, unless it is K ̈ahler.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/82954
url https://hdl.handle.net/1822/82954
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Djebbar, B., Ferreira, A. C., Fino, A., & Youcef, N. Z. L. (2022, December). Locally conformal SKT structures. International Journal of Mathematics. World Scientific Pub Co Pte Ltd. http://doi.org/10.1142/s0129167x22500926
0129-167X
1793-6519
10.1142/S0129167X22500926
2250092
https://www.worldscientific.com/doi/epdf/10.1142/S0129167X22500926
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132338815238145