A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs

Detalhes bibliográficos
Autor(a) principal: Manuel G. Gericota
Data de Publicação: 2007
Outros Autores: Luís F. Lemos, Gustavo R. Alves, José M. Ferreira
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/84632
Resumo: To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of Multi-Bit Upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
id RCAP_7c967215458579ac2eeb66b473e19564
oai_identifier_str oai:repositorio-aberto.up.pt:10216/84632
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAsEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringTo increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of Multi-Bit Upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/84632eng10.1109/DDECS.2007.4295300Manuel G. GericotaLuís F. LemosGustavo R. AlvesJosé M. Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:06:18Zoai:repositorio-aberto.up.pt:10216/84632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:37:52.622723Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
title A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
spellingShingle A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
Manuel G. Gericota
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
title_full A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
title_fullStr A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
title_full_unstemmed A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
title_sort A framework for self-healing radiation-tolerant implementations on reconfigurable FPGAs
author Manuel G. Gericota
author_facet Manuel G. Gericota
Luís F. Lemos
Gustavo R. Alves
José M. Ferreira
author_role author
author2 Luís F. Lemos
Gustavo R. Alves
José M. Ferreira
author2_role author
author
author
dc.contributor.author.fl_str_mv Manuel G. Gericota
Luís F. Lemos
Gustavo R. Alves
José M. Ferreira
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of Multi-Bit Upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/84632
url https://hdl.handle.net/10216/84632
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/DDECS.2007.4295300
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136286763646976