Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species

Detalhes bibliográficos
Autor(a) principal: Varennes, A.
Data de Publicação: 2009
Outros Autores: Queda, Cristina Cunha, Guiwei, Qu
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/1585
Resumo: Many soils derived from pyrite mines spoils are acidic, poor in organic matter and plant nutrients, contaminated with trace elements, and support only sparse vegetation. The establishment of a plant cover is essential to decrease erosion and the contamination of water bodies with acid drainage containing large concentrations of trace elements. We tested the application of compost and polyacrylate polymers to promote the growth of indigenous plant species present in the mine area. Soil treatments consisted of unamended soil (control), soil with mineral fertilizers only, soil with fertilizer plus compost, soil with fertilizer plus polyacrylate polymers, and soil with fertilizer plus both amendments. Half of the soil was grown with Briza maxima L.(greater quaking grass), Chaetopogon fasciculatus (Link) Hayek (chaetopogon), and Spergularia purpurea(Persoon) G. Don fil. (purple sandspurry),while the remainder was left bare. In the absence of plants, the greatest improvements in soil conditions were obtained by the application of both amendments,which was associated with the greatest values of protease, acid phosphatase, and β-glucosidase, whereas the activity of cellulase and microbial respiration were similar in soil amended with compost or polymer. Dehydrogenase activity was greatest in soil with compost (with or without polymer), whereas urease activity was impaired by both amendments. In the presence of plants, the application of both amendments led to the greatest activities of protease,urease, β-glucosidase, cellulase, and microbial respiration, but acid phosphatase was mainly enhanced by polymer and dehydrogenase was increased by compost. Plant growth was stimulated in all treatments compared with unamended soil, but the greatest value for total accumulated biomass was obtained in fertilized soil receiving both amendments. However, species responded differently to treatment: while the growth of B. maxima was greatest in soil with compost and polymer, the growth of C. fasciculatus responded better to soil with compost, and S. purpurea grew better in polymer-amended soil. The amendments tested improved the quality of a mine soil and stimulated plant growth. However, botanical composition likely changes over time with amendments, and this needs to be considered when a large scale application of amendments is projected.
id RCAP_7d3d0d7725dbd68f7fce4ccb7fda314d
oai_identifier_str oai:www.repository.utl.pt:10400.5/1585
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant speciesmine soilenzymatic activitiescompostpolyacrylate polymersMany soils derived from pyrite mines spoils are acidic, poor in organic matter and plant nutrients, contaminated with trace elements, and support only sparse vegetation. The establishment of a plant cover is essential to decrease erosion and the contamination of water bodies with acid drainage containing large concentrations of trace elements. We tested the application of compost and polyacrylate polymers to promote the growth of indigenous plant species present in the mine area. Soil treatments consisted of unamended soil (control), soil with mineral fertilizers only, soil with fertilizer plus compost, soil with fertilizer plus polyacrylate polymers, and soil with fertilizer plus both amendments. Half of the soil was grown with Briza maxima L.(greater quaking grass), Chaetopogon fasciculatus (Link) Hayek (chaetopogon), and Spergularia purpurea(Persoon) G. Don fil. (purple sandspurry),while the remainder was left bare. In the absence of plants, the greatest improvements in soil conditions were obtained by the application of both amendments,which was associated with the greatest values of protease, acid phosphatase, and β-glucosidase, whereas the activity of cellulase and microbial respiration were similar in soil amended with compost or polymer. Dehydrogenase activity was greatest in soil with compost (with or without polymer), whereas urease activity was impaired by both amendments. In the presence of plants, the application of both amendments led to the greatest activities of protease,urease, β-glucosidase, cellulase, and microbial respiration, but acid phosphatase was mainly enhanced by polymer and dehydrogenase was increased by compost. Plant growth was stimulated in all treatments compared with unamended soil, but the greatest value for total accumulated biomass was obtained in fertilized soil receiving both amendments. However, species responded differently to treatment: while the growth of B. maxima was greatest in soil with compost and polymer, the growth of C. fasciculatus responded better to soil with compost, and S. purpurea grew better in polymer-amended soil. The amendments tested improved the quality of a mine soil and stimulated plant growth. However, botanical composition likely changes over time with amendments, and this needs to be considered when a large scale application of amendments is projected.SpringerRepositório da Universidade de LisboaVarennes, A.Queda, Cristina CunhaGuiwei, Qu2009-12-11T14:46:55Z2009-08-042009-08-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/1585eng1573-2932info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:32:50Zoai:www.repository.utl.pt:10400.5/1585Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:49:41.510699Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
title Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
spellingShingle Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
Varennes, A.
mine soil
enzymatic activities
compost
polyacrylate polymers
title_short Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
title_full Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
title_fullStr Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
title_full_unstemmed Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
title_sort Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species
author Varennes, A.
author_facet Varennes, A.
Queda, Cristina Cunha
Guiwei, Qu
author_role author
author2 Queda, Cristina Cunha
Guiwei, Qu
author2_role author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Varennes, A.
Queda, Cristina Cunha
Guiwei, Qu
dc.subject.por.fl_str_mv mine soil
enzymatic activities
compost
polyacrylate polymers
topic mine soil
enzymatic activities
compost
polyacrylate polymers
description Many soils derived from pyrite mines spoils are acidic, poor in organic matter and plant nutrients, contaminated with trace elements, and support only sparse vegetation. The establishment of a plant cover is essential to decrease erosion and the contamination of water bodies with acid drainage containing large concentrations of trace elements. We tested the application of compost and polyacrylate polymers to promote the growth of indigenous plant species present in the mine area. Soil treatments consisted of unamended soil (control), soil with mineral fertilizers only, soil with fertilizer plus compost, soil with fertilizer plus polyacrylate polymers, and soil with fertilizer plus both amendments. Half of the soil was grown with Briza maxima L.(greater quaking grass), Chaetopogon fasciculatus (Link) Hayek (chaetopogon), and Spergularia purpurea(Persoon) G. Don fil. (purple sandspurry),while the remainder was left bare. In the absence of plants, the greatest improvements in soil conditions were obtained by the application of both amendments,which was associated with the greatest values of protease, acid phosphatase, and β-glucosidase, whereas the activity of cellulase and microbial respiration were similar in soil amended with compost or polymer. Dehydrogenase activity was greatest in soil with compost (with or without polymer), whereas urease activity was impaired by both amendments. In the presence of plants, the application of both amendments led to the greatest activities of protease,urease, β-glucosidase, cellulase, and microbial respiration, but acid phosphatase was mainly enhanced by polymer and dehydrogenase was increased by compost. Plant growth was stimulated in all treatments compared with unamended soil, but the greatest value for total accumulated biomass was obtained in fertilized soil receiving both amendments. However, species responded differently to treatment: while the growth of B. maxima was greatest in soil with compost and polymer, the growth of C. fasciculatus responded better to soil with compost, and S. purpurea grew better in polymer-amended soil. The amendments tested improved the quality of a mine soil and stimulated plant growth. However, botanical composition likely changes over time with amendments, and this needs to be considered when a large scale application of amendments is projected.
publishDate 2009
dc.date.none.fl_str_mv 2009-12-11T14:46:55Z
2009-08-04
2009-08-04T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/1585
url http://hdl.handle.net/10400.5/1585
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1573-2932
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130971246690305