ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions

Detalhes bibliográficos
Autor(a) principal: Vale-Costa, Sílvia
Data de Publicação: 2023
Outros Autores: Etibor, Temitope Akhigbe, Brás, Daniela, Sousa, Ana Laura, Ferreira, Mariana, Martins, Gabriel G., Mello, Victor Hugo, Amorim, Maria João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.14/43332
Resumo: AU It is:now Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly established that many viruses that threaten public health : establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol andAU reduces: Pleasecheckandconfirmthattheeditst genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling pathway endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.
id RCAP_7e178dc4056909211fe612fd0826a8fb
oai_identifier_str oai:repositorio.ucp.pt:10400.14/43332
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusionsAU It is:now Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly established that many viruses that threaten public health : establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol andAU reduces: Pleasecheckandconfirmthattheeditst genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling pathway endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.Veritati - Repositório Institucional da Universidade Católica PortuguesaVale-Costa, SílviaEtibor, Temitope AkhigbeBrás, DanielaSousa, Ana LauraFerreira, MarianaMartins, Gabriel G.Mello, Victor HugoAmorim, Maria João2023-12-13T15:32:08Z2023-112023-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/43332eng1544-917310.1371/journal.pbio.300229085178234312PMC1069540037983294001124014400008info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-06T12:44:54Zoai:repositorio.ucp.pt:10400.14/43332Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-06T12:44:54Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
title ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
spellingShingle ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
Vale-Costa, Sílvia
title_short ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
title_full ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
title_fullStr ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
title_full_unstemmed ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
title_sort ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions
author Vale-Costa, Sílvia
author_facet Vale-Costa, Sílvia
Etibor, Temitope Akhigbe
Brás, Daniela
Sousa, Ana Laura
Ferreira, Mariana
Martins, Gabriel G.
Mello, Victor Hugo
Amorim, Maria João
author_role author
author2 Etibor, Temitope Akhigbe
Brás, Daniela
Sousa, Ana Laura
Ferreira, Mariana
Martins, Gabriel G.
Mello, Victor Hugo
Amorim, Maria João
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Veritati - Repositório Institucional da Universidade Católica Portuguesa
dc.contributor.author.fl_str_mv Vale-Costa, Sílvia
Etibor, Temitope Akhigbe
Brás, Daniela
Sousa, Ana Laura
Ferreira, Mariana
Martins, Gabriel G.
Mello, Victor Hugo
Amorim, Maria João
description AU It is:now Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly established that many viruses that threaten public health : establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol andAU reduces: Pleasecheckandconfirmthattheeditst genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling pathway endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-13T15:32:08Z
2023-11
2023-11-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/43332
url http://hdl.handle.net/10400.14/43332
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1544-9173
10.1371/journal.pbio.3002290
85178234312
PMC10695400
37983294
001124014400008
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817547108059709440