Effect of mechanical stress on biofilms challenged by different chemicals

Detalhes bibliográficos
Autor(a) principal: Simões, M.
Data de Publicação: 2005
Outros Autores: Pereira, Maria Olívia, Vieira, M. J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/3751
Resumo: In this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activity and mechanical stability, showing that the biofilms were active, had a high content of extracellular constituents and an inherent mechanical stability. In order to assess the role of chemical agents on the mechanical stability, the biofilms were exposed to chemical agents followed by mechanical treatments by submission to increase Reynolds number of agitation. Seven different chemical agents were tested (two non-oxidising biocides, three surfactants and two oxidising biocides) and their effects on the biofilm mechanical stability were evaluated. The increase in the Reynolds number increased the biofilm removal, but total biofilm removal was not found for all the conditions tested. For the experiment without chemical addition (only mechanical treatment), the biofilm remaining on the surface was about 76%. The chemical treatment followed by the subsequent mechanical treatment did not remove all the biofilms from the surface. The biofilm remaining on the SS cylinder ranged from 3% to 62%, depending on the chemical treatment, showing that the chemical treatment is far from being a cause that induces massive biofilm detachment and even the synergistic chemical and mechanical treatments did not promote biofilm removal. Some chemical agents promoted an increase in the biofilm mechanical stability such as glutaraldehyde (GTA), benzalkonium chloride (BC), except for the lower concentration tested, and sodium dodecyl sulphate (SDS), except for the higher concentration tested. Treatments that promoted biofilm removal, to an extent similar to the control experiment (without chemical treatment), were BC, for the lower and the higher concentration of SDS. Cetyltrimethyl ammonium bromide (CTAB), ortho-phthalaldehyde (OPA), sodium hydroxide (NaOH) and sodium hypochlorite (SHC) promoted the weakening of the biofilm mechanical stability.
id RCAP_7e5450d5a2ab7d2f3b0cb3265bdc26e2
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/3751
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effect of mechanical stress on biofilms challenged by different chemicalsBiofilm behaviourBiofilm controlChemical treatmentMechanical stabilityMechanical stressScience & TechnologyIn this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activity and mechanical stability, showing that the biofilms were active, had a high content of extracellular constituents and an inherent mechanical stability. In order to assess the role of chemical agents on the mechanical stability, the biofilms were exposed to chemical agents followed by mechanical treatments by submission to increase Reynolds number of agitation. Seven different chemical agents were tested (two non-oxidising biocides, three surfactants and two oxidising biocides) and their effects on the biofilm mechanical stability were evaluated. The increase in the Reynolds number increased the biofilm removal, but total biofilm removal was not found for all the conditions tested. For the experiment without chemical addition (only mechanical treatment), the biofilm remaining on the surface was about 76%. The chemical treatment followed by the subsequent mechanical treatment did not remove all the biofilms from the surface. The biofilm remaining on the SS cylinder ranged from 3% to 62%, depending on the chemical treatment, showing that the chemical treatment is far from being a cause that induces massive biofilm detachment and even the synergistic chemical and mechanical treatments did not promote biofilm removal. Some chemical agents promoted an increase in the biofilm mechanical stability such as glutaraldehyde (GTA), benzalkonium chloride (BC), except for the lower concentration tested, and sodium dodecyl sulphate (SDS), except for the higher concentration tested. Treatments that promoted biofilm removal, to an extent similar to the control experiment (without chemical treatment), were BC, for the lower and the higher concentration of SDS. Cetyltrimethyl ammonium bromide (CTAB), ortho-phthalaldehyde (OPA), sodium hydroxide (NaOH) and sodium hypochlorite (SHC) promoted the weakening of the biofilm mechanical stability.Fundação para a Ciência e a Tecnologia (FCT).ElsevierUniversidade do MinhoSimões, M.Pereira, Maria OlíviaVieira, M. J.2005-122005-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/3751eng"Water Research". ISSN 0043-1354. 39:20 (2005) 5142-5152.0043-135410.1016/j.watres.2005.09.02816289205info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:17Zoai:repositorium.sdum.uminho.pt:1822/3751Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:48:57.475454Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effect of mechanical stress on biofilms challenged by different chemicals
title Effect of mechanical stress on biofilms challenged by different chemicals
spellingShingle Effect of mechanical stress on biofilms challenged by different chemicals
Simões, M.
Biofilm behaviour
Biofilm control
Chemical treatment
Mechanical stability
Mechanical stress
Science & Technology
title_short Effect of mechanical stress on biofilms challenged by different chemicals
title_full Effect of mechanical stress on biofilms challenged by different chemicals
title_fullStr Effect of mechanical stress on biofilms challenged by different chemicals
title_full_unstemmed Effect of mechanical stress on biofilms challenged by different chemicals
title_sort Effect of mechanical stress on biofilms challenged by different chemicals
author Simões, M.
author_facet Simões, M.
Pereira, Maria Olívia
Vieira, M. J.
author_role author
author2 Pereira, Maria Olívia
Vieira, M. J.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Simões, M.
Pereira, Maria Olívia
Vieira, M. J.
dc.subject.por.fl_str_mv Biofilm behaviour
Biofilm control
Chemical treatment
Mechanical stability
Mechanical stress
Science & Technology
topic Biofilm behaviour
Biofilm control
Chemical treatment
Mechanical stability
Mechanical stress
Science & Technology
description In this study a methodology was applied in order to ascertain the mechanical stability of biofilms, by using a stainlesssteel (SS) rotating device immersed in a biological reactor where biofilms formed by Pseudomonas fluorescens were allowed to grow for 7 days at a Reynolds number of agitation of 2400. The biofilms developed with this system were characterised in terms of amount of total, extracellular and intracellular proteins and polysaccharides, amount of mass, metabolic activity and mechanical stability, showing that the biofilms were active, had a high content of extracellular constituents and an inherent mechanical stability. In order to assess the role of chemical agents on the mechanical stability, the biofilms were exposed to chemical agents followed by mechanical treatments by submission to increase Reynolds number of agitation. Seven different chemical agents were tested (two non-oxidising biocides, three surfactants and two oxidising biocides) and their effects on the biofilm mechanical stability were evaluated. The increase in the Reynolds number increased the biofilm removal, but total biofilm removal was not found for all the conditions tested. For the experiment without chemical addition (only mechanical treatment), the biofilm remaining on the surface was about 76%. The chemical treatment followed by the subsequent mechanical treatment did not remove all the biofilms from the surface. The biofilm remaining on the SS cylinder ranged from 3% to 62%, depending on the chemical treatment, showing that the chemical treatment is far from being a cause that induces massive biofilm detachment and even the synergistic chemical and mechanical treatments did not promote biofilm removal. Some chemical agents promoted an increase in the biofilm mechanical stability such as glutaraldehyde (GTA), benzalkonium chloride (BC), except for the lower concentration tested, and sodium dodecyl sulphate (SDS), except for the higher concentration tested. Treatments that promoted biofilm removal, to an extent similar to the control experiment (without chemical treatment), were BC, for the lower and the higher concentration of SDS. Cetyltrimethyl ammonium bromide (CTAB), ortho-phthalaldehyde (OPA), sodium hydroxide (NaOH) and sodium hypochlorite (SHC) promoted the weakening of the biofilm mechanical stability.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
2005-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/3751
url http://hdl.handle.net/1822/3751
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Water Research". ISSN 0043-1354. 39:20 (2005) 5142-5152.
0043-1354
10.1016/j.watres.2005.09.028
16289205
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133069474529280