Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/119708 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_7e7119b53f05af34f6935e66b43126e2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/119708 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal qualityGenerative ModelsGenerative Adversarial NetworksNeural NetworksMachine LearningSynthetic DataTelecommunicationsProject Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsWireless networks are, currently, one of the main technologies used to connect people. Considering the constant advancements in the field, the telecom operators must guarantee a high-quality service to keep their customer portfolio. To ensure this high-quality service, it is common the establishment of partnerships with specialized technology companies that deliver software services to monitor the networks and identify faults and respective solutions. Although, a common barrier faced for these specialized companies is the lack of data to develop and test their products. This project’s purpose was to better understand Generative Adversarial Networks (GANs), an algorithm considered state-of-theart between the generative models, and test its usage to generate synthetic telecommunication data that can fill this gap. To do that, it was developed, trained and compared two of the most used GAN’s architectures, the Vanilla GAN and the WGAN. Both the models presented good results and was able to simulate datasets very similar to the real ones. The WGAN was chosen as the final model, but just for presenting a slightly and subjective better result on the descriptive analysis. In fact, the two models had very similar outputs and both can be used.Castelli, MauroRUNEspindola, Tatiane Sander2021-05-282024-05-28T00:00:00Z2021-05-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/119708TID:202734510enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:02:20Zoai:run.unl.pt:10362/119708Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:10.400467Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
title |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
spellingShingle |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality Espindola, Tatiane Sander Generative Models Generative Adversarial Networks Neural Networks Machine Learning Synthetic Data Telecommunications |
title_short |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
title_full |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
title_fullStr |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
title_full_unstemmed |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
title_sort |
Generative Adversarial Networks applied to Telecom Data - Using GANs to generate synthetic features regarding Wi-Fi signal quality |
author |
Espindola, Tatiane Sander |
author_facet |
Espindola, Tatiane Sander |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Espindola, Tatiane Sander |
dc.subject.por.fl_str_mv |
Generative Models Generative Adversarial Networks Neural Networks Machine Learning Synthetic Data Telecommunications |
topic |
Generative Models Generative Adversarial Networks Neural Networks Machine Learning Synthetic Data Telecommunications |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-28 2021-05-28T00:00:00Z 2024-05-28T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/119708 TID:202734510 |
url |
http://hdl.handle.net/10362/119708 |
identifier_str_mv |
TID:202734510 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138049954676736 |