Multistage Quality Control Using Machine Learning in the Automotive Industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/147028 |
Resumo: | FCT/MCTES (UNINOVA-CTS funding UID/EEA/00066/2019) |
id |
RCAP_7e91124194eade0521f4cff667f6aa3b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/147028 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multistage Quality Control Using Machine Learning in the Automotive Industryautomotive industryindustry 40Machine learningmultistagepredictive manufacturing systemquality controlComputer Science(all)Materials Science(all)Engineering(all)FCT/MCTES (UNINOVA-CTS funding UID/EEA/00066/2019)Product dimensional variability is a crucial factor in the quality control of complex multistage manufacturing processes, where undetected defects can easily be propagated downstream. The recent advances in information technologies and consequently the increased volume of data that has become readily available provide an excellent opportunity for the development of automated defect detection approaches that are capable of extracting the implicit complex relationships in these multivariate data-rich environments. In this paper, several machine learning classifiers were trained and evaluated on varied metrics to predict dimensional defects in a real automotive multistage assembly line. The line encompasses two automated inspection stages with several human-operated assembly and pre-alignment stages in between. The results show that non-linear models like XGBoost and Random Forests are capable of modelling the complexity of such an environment, achieving a high true positive rate and showing promise for the improvement of existing quality control approaches, enabling defects and deviations to be addressed earlier and thus assist in reducing scrap and repair costs.UNINOVA-Instituto de Desenvolvimento de Novas TecnologiasCTS - Centro de Tecnologia e SistemasRUNPeres, Ricardo SilvaBarata, JoséLeitão, PauloGarcia, Gisela2023-01-05T22:12:17Z2019-01-012019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article9application/pdfhttp://hdl.handle.net/10362/147028engPURE: 15490922https://doi.org/10.1109/ACCESS.2019.2923405info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:07:44Zoai:run.unl.pt:10362/147028Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:07:44Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
title |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
spellingShingle |
Multistage Quality Control Using Machine Learning in the Automotive Industry Peres, Ricardo Silva automotive industry industry 40 Machine learning multistage predictive manufacturing system quality control Computer Science(all) Materials Science(all) Engineering(all) |
title_short |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
title_full |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
title_fullStr |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
title_full_unstemmed |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
title_sort |
Multistage Quality Control Using Machine Learning in the Automotive Industry |
author |
Peres, Ricardo Silva |
author_facet |
Peres, Ricardo Silva Barata, José Leitão, Paulo Garcia, Gisela |
author_role |
author |
author2 |
Barata, José Leitão, Paulo Garcia, Gisela |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias CTS - Centro de Tecnologia e Sistemas RUN |
dc.contributor.author.fl_str_mv |
Peres, Ricardo Silva Barata, José Leitão, Paulo Garcia, Gisela |
dc.subject.por.fl_str_mv |
automotive industry industry 40 Machine learning multistage predictive manufacturing system quality control Computer Science(all) Materials Science(all) Engineering(all) |
topic |
automotive industry industry 40 Machine learning multistage predictive manufacturing system quality control Computer Science(all) Materials Science(all) Engineering(all) |
description |
FCT/MCTES (UNINOVA-CTS funding UID/EEA/00066/2019) |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2019-01-01T00:00:00Z 2023-01-05T22:12:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/147028 |
url |
http://hdl.handle.net/10362/147028 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 15490922 https://doi.org/10.1109/ACCESS.2019.2923405 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
9 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545906118983680 |