A Machine Learning Approach for Prediction of Signaling SIP Dialogs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/123689 |
Resumo: | POCI-01-0145-FEDER-030433 LISBOA-01-0145-FEDER-0307095 UIDB/EEA/50008/2020 |
id |
RCAP_181fbf5aeec09dfa352cc0b0a5e11664 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/123689 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Machine Learning Approach for Prediction of Signaling SIP DialogsBayesian networkshidden Markov chainsmachine learningSession initiation protocolComputer Science(all)Materials Science(all)Engineering(all)POCI-01-0145-FEDER-030433 LISBOA-01-0145-FEDER-0307095 UIDB/EEA/50008/2020In this paper, we propose a machine learning methodology for prediction of signaling sessions established with the Session Initiation Protocol (SIP). Given the increasing importance of predicting and detecting abnormal sequences of SIP messages to avoid SIP signaling-based attacks, we first propose a Bayesian inference method capable of representing the statistical relation between a SIP message, observed by a SIP user agent or a SIP server, and prior trustworthy SIP dialogs. The Bayesian inference method, a Hidden Markov Model (HMM) enriched with $n-$ gram Markov observations, is updated over time, so the inference can be used in real-time. The HMM is then used for predicting and detecting SIP dialogs through a lightweight implementation of Viterbi algorithm for sparse state spaces. Experimental results are also reported, where a SIP dataset representing prior information collected by a SIP user agent and/or a SIP server is used to predict or detect if a received sequence of SIP messages is legitimate according to similar SIP dialogs already observed. Finally, we discuss the results obtained for a dataset of abnormal SIP sequences, not observed during the inference stage, showing the effective utility of the proposed methodology to detect abnormal SIP sequences in a short period of time.DEE - Departamento de Engenharia Electrotécnica e de ComputadoresRUNPereira, DiogoOliveira, RodolfoKim, Hyong S.2021-09-03T00:12:38Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttp://hdl.handle.net/10362/123689engPURE: 29590316https://doi.org/10.1109/ACCESS.2021.3065660info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:05:02Zoai:run.unl.pt:10362/123689Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:08.932726Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
title |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
spellingShingle |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs Pereira, Diogo Bayesian networks hidden Markov chains machine learning Session initiation protocol Computer Science(all) Materials Science(all) Engineering(all) |
title_short |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
title_full |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
title_fullStr |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
title_full_unstemmed |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
title_sort |
A Machine Learning Approach for Prediction of Signaling SIP Dialogs |
author |
Pereira, Diogo |
author_facet |
Pereira, Diogo Oliveira, Rodolfo Kim, Hyong S. |
author_role |
author |
author2 |
Oliveira, Rodolfo Kim, Hyong S. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DEE - Departamento de Engenharia Electrotécnica e de Computadores RUN |
dc.contributor.author.fl_str_mv |
Pereira, Diogo Oliveira, Rodolfo Kim, Hyong S. |
dc.subject.por.fl_str_mv |
Bayesian networks hidden Markov chains machine learning Session initiation protocol Computer Science(all) Materials Science(all) Engineering(all) |
topic |
Bayesian networks hidden Markov chains machine learning Session initiation protocol Computer Science(all) Materials Science(all) Engineering(all) |
description |
POCI-01-0145-FEDER-030433 LISBOA-01-0145-FEDER-0307095 UIDB/EEA/50008/2020 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-03T00:12:38Z 2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/123689 |
url |
http://hdl.handle.net/10362/123689 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 29590316 https://doi.org/10.1109/ACCESS.2021.3065660 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138057384886272 |