Effective computability of solutions of differential inclusions-the ten thousand monkeys approach

Detalhes bibliográficos
Autor(a) principal: Collins, Pieter
Data de Publicação: 2009
Outros Autores: Graça, Daniel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/1017
Resumo: In this note we consider the computability of the solution of the initial- value problem for ordinary di erential equations with continuous right- hand side. We present algorithms for the computation of the solution using the \thousand monkeys" approach, in which we generate all possi- ble solution tubes, and then check which are valid. In this way, we show that the solution of a di erential equation de ned by a locally Lipschitz function is computable even if the function is not e ectively locally Lips- chitz. We also recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable, even if the right-hand side is not locally Lipschitz. We also prove that the maximal interval of existence for the solution must be e ectively enumerable open, and give an example of a computable locally Lipschitz function which is not e ectively locally Lipschitz.
id RCAP_7ed221c6512e5d15666241b1011bd163
oai_identifier_str oai:sapientia.ualg.pt:10400.1/1017
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effective computability of solutions of differential inclusions-the ten thousand monkeys approachOrdinary differential equationsLipschitz conditionDifferential inclusionsSemicomputabilityComputable analysisIn this note we consider the computability of the solution of the initial- value problem for ordinary di erential equations with continuous right- hand side. We present algorithms for the computation of the solution using the \thousand monkeys" approach, in which we generate all possi- ble solution tubes, and then check which are valid. In this way, we show that the solution of a di erential equation de ned by a locally Lipschitz function is computable even if the function is not e ectively locally Lips- chitz. We also recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable, even if the right-hand side is not locally Lipschitz. We also prove that the maximal interval of existence for the solution must be e ectively enumerable open, and give an example of a computable locally Lipschitz function which is not e ectively locally Lipschitz.SapientiaCollins, PieterGraça, Daniel2012-04-13T08:43:10Z20092009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/1017engAUT: DGR01772;info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:11:57Zoai:sapientia.ualg.pt:10400.1/1017Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:55:16.807809Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
title Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
spellingShingle Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
Collins, Pieter
Ordinary differential equations
Lipschitz condition
Differential inclusions
Semicomputability
Computable analysis
title_short Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
title_full Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
title_fullStr Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
title_full_unstemmed Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
title_sort Effective computability of solutions of differential inclusions-the ten thousand monkeys approach
author Collins, Pieter
author_facet Collins, Pieter
Graça, Daniel
author_role author
author2 Graça, Daniel
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Collins, Pieter
Graça, Daniel
dc.subject.por.fl_str_mv Ordinary differential equations
Lipschitz condition
Differential inclusions
Semicomputability
Computable analysis
topic Ordinary differential equations
Lipschitz condition
Differential inclusions
Semicomputability
Computable analysis
description In this note we consider the computability of the solution of the initial- value problem for ordinary di erential equations with continuous right- hand side. We present algorithms for the computation of the solution using the \thousand monkeys" approach, in which we generate all possi- ble solution tubes, and then check which are valid. In this way, we show that the solution of a di erential equation de ned by a locally Lipschitz function is computable even if the function is not e ectively locally Lips- chitz. We also recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable, even if the right-hand side is not locally Lipschitz. We also prove that the maximal interval of existence for the solution must be e ectively enumerable open, and give an example of a computable locally Lipschitz function which is not e ectively locally Lipschitz.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
2012-04-13T08:43:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/1017
url http://hdl.handle.net/10400.1/1017
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv AUT: DGR01772;
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133154981707776