Random extremal solutions of differential inclusions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15704 |
Resumo: | Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side. |
id |
RCAP_dab340e1bc481153b2ab9e8042425690 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15704 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Random extremal solutions of differential inclusionsDifferential inclusionsLipschitz selectionsExtremal solutionsRandom solutionsGiven a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side.Springer2016-06-13T09:59:14Z2016-06-01T00:00:00Z2016-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15704eng1021-972210.1007/s00030-016-0375-0Bressan, AlbertoStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:09Zoai:ria.ua.pt:10773/15704Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:38.923319Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Random extremal solutions of differential inclusions |
title |
Random extremal solutions of differential inclusions |
spellingShingle |
Random extremal solutions of differential inclusions Bressan, Alberto Differential inclusions Lipschitz selections Extremal solutions Random solutions |
title_short |
Random extremal solutions of differential inclusions |
title_full |
Random extremal solutions of differential inclusions |
title_fullStr |
Random extremal solutions of differential inclusions |
title_full_unstemmed |
Random extremal solutions of differential inclusions |
title_sort |
Random extremal solutions of differential inclusions |
author |
Bressan, Alberto |
author_facet |
Bressan, Alberto Staicu, Vasile |
author_role |
author |
author2 |
Staicu, Vasile |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bressan, Alberto Staicu, Vasile |
dc.subject.por.fl_str_mv |
Differential inclusions Lipschitz selections Extremal solutions Random solutions |
topic |
Differential inclusions Lipschitz selections Extremal solutions Random solutions |
description |
Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-13T09:59:14Z 2016-06-01T00:00:00Z 2016-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15704 |
url |
http://hdl.handle.net/10773/15704 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1021-9722 10.1007/s00030-016-0375-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137556564017152 |