Inverse probability weighted M-estimators for sample selection, attrition, and stratification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/15460 |
Resumo: | I provide an overviewof inverse probability weighted (IPW)M-estimators for cross section and two-period panel data applications. Under an ignorability assumption, I show that population parameters are identified,and provide straightforward √ N-consistent and asymptotically normal estimation methods. I show that estimating a binary response selection model by conditional maximum likelihood leads to a more efficient estimator than using known probabilities,a result that unifies several disparate results in the literature. But IPW estimation is not a panacea: in some important cases of nonresponse,unweighted estimators will be consistent under weaker ignorability assumptions. |
id |
RCAP_7ee47a1e2702c9505cf1e2a97fc25743 |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/15460 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Inverse probability weighted M-estimators for sample selection, attrition, and stratificationAttritionInverse probability weightingM-estimatorNonresponseSample selectionTreatment effectI provide an overviewof inverse probability weighted (IPW)M-estimators for cross section and two-period panel data applications. Under an ignorability assumption, I show that population parameters are identified,and provide straightforward √ N-consistent and asymptotically normal estimation methods. I show that estimating a binary response selection model by conditional maximum likelihood leads to a more efficient estimator than using known probabilities,a result that unifies several disparate results in the literature. But IPW estimation is not a panacea: in some important cases of nonresponse,unweighted estimators will be consistent under weaker ignorability assumptions.Springer VerlagRepositório da Universidade de LisboaWooldridge, Jeffrey M.2018-05-23T09:34:20Z2002-082002-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/15460porWooldridge, Jeffrey M. (2002). "Inverse probability weighted M-estimators for sample selection, attrition, and stratification". Portuguese Economic Journal, 1(2):117-1391617-982X (print)10.1007/s10258-002-0008-xmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:45:25Zoai:www.repository.utl.pt:10400.5/15460Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:01:06.903448Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
title |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
spellingShingle |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification Wooldridge, Jeffrey M. Attrition Inverse probability weighting M-estimator Nonresponse Sample selection Treatment effect |
title_short |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
title_full |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
title_fullStr |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
title_full_unstemmed |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
title_sort |
Inverse probability weighted M-estimators for sample selection, attrition, and stratification |
author |
Wooldridge, Jeffrey M. |
author_facet |
Wooldridge, Jeffrey M. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Wooldridge, Jeffrey M. |
dc.subject.por.fl_str_mv |
Attrition Inverse probability weighting M-estimator Nonresponse Sample selection Treatment effect |
topic |
Attrition Inverse probability weighting M-estimator Nonresponse Sample selection Treatment effect |
description |
I provide an overviewof inverse probability weighted (IPW)M-estimators for cross section and two-period panel data applications. Under an ignorability assumption, I show that population parameters are identified,and provide straightforward √ N-consistent and asymptotically normal estimation methods. I show that estimating a binary response selection model by conditional maximum likelihood leads to a more efficient estimator than using known probabilities,a result that unifies several disparate results in the literature. But IPW estimation is not a panacea: in some important cases of nonresponse,unweighted estimators will be consistent under weaker ignorability assumptions. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-08 2002-08-01T00:00:00Z 2018-05-23T09:34:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/15460 |
url |
http://hdl.handle.net/10400.5/15460 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Wooldridge, Jeffrey M. (2002). "Inverse probability weighted M-estimators for sample selection, attrition, and stratification". Portuguese Economic Journal, 1(2):117-139 1617-982X (print) 10.1007/s10258-002-0008-x |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131099786379264 |