Inverse probability weighted M-estimators for sample selection, attrition, and stratification

Detalhes bibliográficos
Autor(a) principal: Wooldridge, Jeffrey M.
Data de Publicação: 2002
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/15460
Resumo: I provide an overviewof inverse probability weighted (IPW)M-estimators for cross section and two-period panel data applications. Under an ignorability assumption, I show that population parameters are identified,and provide straightforward √ N-consistent and asymptotically normal estimation methods. I show that estimating a binary response selection model by conditional maximum likelihood leads to a more efficient estimator than using known probabilities,a result that unifies several disparate results in the literature. But IPW estimation is not a panacea: in some important cases of nonresponse,unweighted estimators will be consistent under weaker ignorability assumptions.
id RCAP_7ee47a1e2702c9505cf1e2a97fc25743
oai_identifier_str oai:www.repository.utl.pt:10400.5/15460
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Inverse probability weighted M-estimators for sample selection, attrition, and stratificationAttritionInverse probability weightingM-estimatorNonresponseSample selectionTreatment effectI provide an overviewof inverse probability weighted (IPW)M-estimators for cross section and two-period panel data applications. Under an ignorability assumption, I show that population parameters are identified,and provide straightforward √ N-consistent and asymptotically normal estimation methods. I show that estimating a binary response selection model by conditional maximum likelihood leads to a more efficient estimator than using known probabilities,a result that unifies several disparate results in the literature. But IPW estimation is not a panacea: in some important cases of nonresponse,unweighted estimators will be consistent under weaker ignorability assumptions.Springer VerlagRepositório da Universidade de LisboaWooldridge, Jeffrey M.2018-05-23T09:34:20Z2002-082002-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/15460porWooldridge, Jeffrey M. (2002). "Inverse probability weighted M-estimators for sample selection, attrition, and stratification". Portuguese Economic Journal, 1(2):117-1391617-982X (print)10.1007/s10258-002-0008-xmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:45:25Zoai:www.repository.utl.pt:10400.5/15460Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:01:06.903448Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Inverse probability weighted M-estimators for sample selection, attrition, and stratification
title Inverse probability weighted M-estimators for sample selection, attrition, and stratification
spellingShingle Inverse probability weighted M-estimators for sample selection, attrition, and stratification
Wooldridge, Jeffrey M.
Attrition
Inverse probability weighting
M-estimator
Nonresponse
Sample selection
Treatment effect
title_short Inverse probability weighted M-estimators for sample selection, attrition, and stratification
title_full Inverse probability weighted M-estimators for sample selection, attrition, and stratification
title_fullStr Inverse probability weighted M-estimators for sample selection, attrition, and stratification
title_full_unstemmed Inverse probability weighted M-estimators for sample selection, attrition, and stratification
title_sort Inverse probability weighted M-estimators for sample selection, attrition, and stratification
author Wooldridge, Jeffrey M.
author_facet Wooldridge, Jeffrey M.
author_role author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Wooldridge, Jeffrey M.
dc.subject.por.fl_str_mv Attrition
Inverse probability weighting
M-estimator
Nonresponse
Sample selection
Treatment effect
topic Attrition
Inverse probability weighting
M-estimator
Nonresponse
Sample selection
Treatment effect
description I provide an overviewof inverse probability weighted (IPW)M-estimators for cross section and two-period panel data applications. Under an ignorability assumption, I show that population parameters are identified,and provide straightforward √ N-consistent and asymptotically normal estimation methods. I show that estimating a binary response selection model by conditional maximum likelihood leads to a more efficient estimator than using known probabilities,a result that unifies several disparate results in the literature. But IPW estimation is not a panacea: in some important cases of nonresponse,unweighted estimators will be consistent under weaker ignorability assumptions.
publishDate 2002
dc.date.none.fl_str_mv 2002-08
2002-08-01T00:00:00Z
2018-05-23T09:34:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/15460
url http://hdl.handle.net/10400.5/15460
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Wooldridge, Jeffrey M. (2002). "Inverse probability weighted M-estimators for sample selection, attrition, and stratification". Portuguese Economic Journal, 1(2):117-139
1617-982X (print)
10.1007/s10258-002-0008-x
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131099786379264