Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug

Detalhes bibliográficos
Autor(a) principal: Shekar, Akudari Raja
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.13/1533
Resumo: Although doxorubicin (DOX) has been widely investigated for treatment of different types of cancer, its poor cellular uptake and intracellular release still limit its further clinical applications (1). Due to their favourable characteristics, including the well-defined architecture, multivalency, and modifiable surface functionality, poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for biomedical applications (2). However, most of the dendrimers are nondegradable, consequently resulting in high toxicity and uncontrollable drug release with limited release efficiency, which limits their further application in delivery of therapeutic agents (3). Low generation dendrimers are less expensive, possess a low number of defects and are more biocompatible than those of high generation. In this work degradable dendrimer nanoclusters were prepared by crosslinking of low generation PAMAM dendrimers (Generation 3, G3) using N, N’- cystamine-bis-acrylamide (CBA) as a disulphide containing cross linker. The synthesized G3-CBA was then PEGylated using methoxyl poly(ethylene glycol) carboxylic acid (m-PEG-COOH) (MW 2000 g/mol) for further improvement of the colloidal stability, which can be also helpful for prolonging the circulation period as well as reducing their toxicity, immunogenicity and antigenicity. The resulting G3-CBA-PEG dendrimers were characterised using Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Red Spectroscopy (FTIR), and Dynamic Light Scattering (DLS) to confirm the structure of G3-CBA and their PEGylated form (G3-CBAPEG). UV-Visible Spectroscopy technique was also performed to study the encapsulation of drug in the synthesized dendrimer nanoclusters. DOX, as a model drug was loaded into the resulting G3-CBA-PEG to obtain drug-loaded nanosystems (G3-CBA-PEG/DOX), which have been tested for anticancer drug delivery, concerning their drug release properties and anticancer cytotoxicity and cellular uptake through evaluation against CAL-72 cells (an osteosarcoma cell line). The results indicate that G3-CBA-PEG/DOX presented a pH and redox sensitive drug release in a sustainable way. The G3-CBA-PEG showed a reduced cytotoxicity than G3 dendrimers. G3-CBA-PEG/DOX presented a comparable anticancer cytotoxicity as compared with G3/DOX. The merits of the low generation PAMAM dendrimers, such as good cytocompatibility, sustained pH- and redox- dual cell responsive release properties, and improved anticancer activity, make them a promising platform for the delivery of other therapeutic agents beyond DOX.
id RCAP_7f592d027a6027b554e22ab152a35da5
oai_identifier_str oai:digituma.uma.pt:10400.13/1533
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drugDendrimersNanoclustersDoxorubicinDrug deliveryDendrímerosNanoagregadosDoxorubicinaEntrega de fármacosNanochemistry and Nanomaterials.Faculdade de Ciências Exatas e da EngenhariaDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos MateriaisDomínio/Área Científica::Ciências Médicas::Biotecnologia MédicaAlthough doxorubicin (DOX) has been widely investigated for treatment of different types of cancer, its poor cellular uptake and intracellular release still limit its further clinical applications (1). Due to their favourable characteristics, including the well-defined architecture, multivalency, and modifiable surface functionality, poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for biomedical applications (2). However, most of the dendrimers are nondegradable, consequently resulting in high toxicity and uncontrollable drug release with limited release efficiency, which limits their further application in delivery of therapeutic agents (3). Low generation dendrimers are less expensive, possess a low number of defects and are more biocompatible than those of high generation. In this work degradable dendrimer nanoclusters were prepared by crosslinking of low generation PAMAM dendrimers (Generation 3, G3) using N, N’- cystamine-bis-acrylamide (CBA) as a disulphide containing cross linker. The synthesized G3-CBA was then PEGylated using methoxyl poly(ethylene glycol) carboxylic acid (m-PEG-COOH) (MW 2000 g/mol) for further improvement of the colloidal stability, which can be also helpful for prolonging the circulation period as well as reducing their toxicity, immunogenicity and antigenicity. The resulting G3-CBA-PEG dendrimers were characterised using Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Red Spectroscopy (FTIR), and Dynamic Light Scattering (DLS) to confirm the structure of G3-CBA and their PEGylated form (G3-CBAPEG). UV-Visible Spectroscopy technique was also performed to study the encapsulation of drug in the synthesized dendrimer nanoclusters. DOX, as a model drug was loaded into the resulting G3-CBA-PEG to obtain drug-loaded nanosystems (G3-CBA-PEG/DOX), which have been tested for anticancer drug delivery, concerning their drug release properties and anticancer cytotoxicity and cellular uptake through evaluation against CAL-72 cells (an osteosarcoma cell line). The results indicate that G3-CBA-PEG/DOX presented a pH and redox sensitive drug release in a sustainable way. The G3-CBA-PEG showed a reduced cytotoxicity than G3 dendrimers. G3-CBA-PEG/DOX presented a comparable anticancer cytotoxicity as compared with G3/DOX. The merits of the low generation PAMAM dendrimers, such as good cytocompatibility, sustained pH- and redox- dual cell responsive release properties, and improved anticancer activity, make them a promising platform for the delivery of other therapeutic agents beyond DOX.A doxorrubicina (DOX) tem sido amplamente investigada para o tratamento de diferentes tipos de cancro. Contudo, a sua má internalização e libertação celular limitam ainda novas aplicações clínicas (1). Dadas as suas características favoráveis, onde se incluem a arquitectura bem definida, multivalência e possibilidade de modificação da superfície (funcionalização), os dendrímeros de poli(amidoamina) (PAMAM) têm sido amplamente investigados para aplicações biomédicas (2). No entanto, a maioria dos dendrímeros não são degradáveis, resultando numa alta toxicidade e libertação descontrolada do fármaco o que limita a sua eficiência de libertação e posterior aplicação na entrega de agentes terapêuticos (3). Neste trabalho prepararam-se dendrímeros PAMAM biodegradáveis por reticulação de dendrímeros PAMAM de baixa geração (Geração 3, G3) usando cistaminabisacrilamida (CBA) como um agente de reticulação contendo dissulfureto. Estes dendrímeros são mais baratos, apresentam um baixo índice de defeitos e são mais biocompatíveis que os de alta geração. O G3-CBA sintetizado foi posteriormente modificado com polietileno glicol (PEG) utilizando o m-PEG-COOH (MW 2000) para camuflá-lo do sistema imunitário do hospedeiro ou para uma imunogenicidade reduzida e antigenicidade. A modificação com o PEG também ajuda a aumentar o tamanho hidrodinâmico da droga o que proporciona um aumento do tempo de circulação, reduzindo a depuração renal. Os dendrímeros G3-CBA-PEG resultantes foram caracterizados por Ressonância Magnética Nuclear (RMN), Espectroscopia de Infra-vermelho com Transformada de Fourier (FTIR), Dispersão Dinâmica de Luz (DLS) e por espectroscopia de UV-Visível para confirmar a polimerização do G3-CBA, a modificação com o PEG do G3-CBA-PEG, para medir o tamanho hidrodinâmico do nano-cluster e para caracterizar e medir o encapsulamento de doxorrubicina em G3-CBA-PEG. A DOX, como um fármaco modelo, foi encapsulada no G3-CBA-PEG para obter nanosistemas (G3-CBA-PEG/DOX). Estes foram posteriormente testados em células CAL-72 (linha celular de osteosarcoma) para entrega deste fármaco anticancerígeno, considerando as suas propriedades de libertação, citotoxicidade e internalização celular. O sistema G3-CBA-PEG/DOX revelou uma libertação controlada do fármaco que era dependente do pH e das condições de oxidação-redução. O G3-CBA-PEG exibiu uma citotoxicidade inferior vi à dos dendrímeros G3 e o sistema G3-CBA-PEG/DOX apresentou uma citotoxicidade anticancerígena comparável à do G3/DOX. Os atributos dos dendrímeros PAMAM de baixa geração, a boa citocompatibilidade, a capacidade de reposta celular e a libertação do fármaco controlada e dependente do pH e das condições de oxidação-redução, e atividade anticancerígena melhorada, fazem deles uma promissora plataforma para entrega de outros agentes terapeuticos além da DOX.Yulin, LiRodrigues, João Manuel CunhaTomás, Helena Maria Pires GasparDigitUMaShekar, Akudari Raja2017-06-16T00:30:09Z2014-11-132014-11-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.13/1533TID:201648172enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-26T03:35:06Zoai:digituma.uma.pt:10400.13/1533Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:04:14.866800Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
title Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
spellingShingle Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
Shekar, Akudari Raja
Dendrimers
Nanoclusters
Doxorubicin
Drug delivery
Dendrímeros
Nanoagregados
Doxorubicina
Entrega de fármacos
Nanochemistry and Nanomaterials
.
Faculdade de Ciências Exatas e da Engenharia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
Domínio/Área Científica::Ciências Médicas::Biotecnologia Médica
title_short Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
title_full Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
title_fullStr Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
title_full_unstemmed Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
title_sort Low generation degradable dendrimer nanoclusters for delivery of anti-cancer drug
author Shekar, Akudari Raja
author_facet Shekar, Akudari Raja
author_role author
dc.contributor.none.fl_str_mv Yulin, Li
Rodrigues, João Manuel Cunha
Tomás, Helena Maria Pires Gaspar
DigitUMa
dc.contributor.author.fl_str_mv Shekar, Akudari Raja
dc.subject.por.fl_str_mv Dendrimers
Nanoclusters
Doxorubicin
Drug delivery
Dendrímeros
Nanoagregados
Doxorubicina
Entrega de fármacos
Nanochemistry and Nanomaterials
.
Faculdade de Ciências Exatas e da Engenharia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
Domínio/Área Científica::Ciências Médicas::Biotecnologia Médica
topic Dendrimers
Nanoclusters
Doxorubicin
Drug delivery
Dendrímeros
Nanoagregados
Doxorubicina
Entrega de fármacos
Nanochemistry and Nanomaterials
.
Faculdade de Ciências Exatas e da Engenharia
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
Domínio/Área Científica::Ciências Médicas::Biotecnologia Médica
description Although doxorubicin (DOX) has been widely investigated for treatment of different types of cancer, its poor cellular uptake and intracellular release still limit its further clinical applications (1). Due to their favourable characteristics, including the well-defined architecture, multivalency, and modifiable surface functionality, poly(amidoamine) (PAMAM) dendrimers have been extensively investigated for biomedical applications (2). However, most of the dendrimers are nondegradable, consequently resulting in high toxicity and uncontrollable drug release with limited release efficiency, which limits their further application in delivery of therapeutic agents (3). Low generation dendrimers are less expensive, possess a low number of defects and are more biocompatible than those of high generation. In this work degradable dendrimer nanoclusters were prepared by crosslinking of low generation PAMAM dendrimers (Generation 3, G3) using N, N’- cystamine-bis-acrylamide (CBA) as a disulphide containing cross linker. The synthesized G3-CBA was then PEGylated using methoxyl poly(ethylene glycol) carboxylic acid (m-PEG-COOH) (MW 2000 g/mol) for further improvement of the colloidal stability, which can be also helpful for prolonging the circulation period as well as reducing their toxicity, immunogenicity and antigenicity. The resulting G3-CBA-PEG dendrimers were characterised using Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Red Spectroscopy (FTIR), and Dynamic Light Scattering (DLS) to confirm the structure of G3-CBA and their PEGylated form (G3-CBAPEG). UV-Visible Spectroscopy technique was also performed to study the encapsulation of drug in the synthesized dendrimer nanoclusters. DOX, as a model drug was loaded into the resulting G3-CBA-PEG to obtain drug-loaded nanosystems (G3-CBA-PEG/DOX), which have been tested for anticancer drug delivery, concerning their drug release properties and anticancer cytotoxicity and cellular uptake through evaluation against CAL-72 cells (an osteosarcoma cell line). The results indicate that G3-CBA-PEG/DOX presented a pH and redox sensitive drug release in a sustainable way. The G3-CBA-PEG showed a reduced cytotoxicity than G3 dendrimers. G3-CBA-PEG/DOX presented a comparable anticancer cytotoxicity as compared with G3/DOX. The merits of the low generation PAMAM dendrimers, such as good cytocompatibility, sustained pH- and redox- dual cell responsive release properties, and improved anticancer activity, make them a promising platform for the delivery of other therapeutic agents beyond DOX.
publishDate 2014
dc.date.none.fl_str_mv 2014-11-13
2014-11-13T00:00:00Z
2017-06-16T00:30:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.13/1533
TID:201648172
url http://hdl.handle.net/10400.13/1533
identifier_str_mv TID:201648172
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799129912027643904