In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.48797/sl.2024.237 |
Resumo: | Background: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT), lysergic acid diethylamide (LSD), and mescaline are classic hallucinogens known for their recreational use, which increased in the last decades. Despite some available data on the metabolism of these drugs [1-3], a scientific gap exists regarding their possible interactions with CYP450 enzymes. Nevertheless, this information is of crucial relevance to predict drug-drug interactions and understand toxicological phenomena, in particular interindividual variability. Objective: This study aimed to evaluate in vitro and in silico the interaction of 5-MeO-DMT, LSD, and mescaline with the enzymes CYP2A6/2B6/2D6/2E1/3A4. Methods: The in vitro assessment of CYP450 inhibition was performed using the Vivid®CYP450 screening kits. IC50 was calculated using GraphPad Prism 9.3.0. For in silico assessment, molecular dynamics were performed using the PMEMD.cuda module in AMBER16. Calculations were made on the last 100 ns of the trajectory (stable zone) to assess the interaction mode/strength between enzyme and ligand, namely MMGBSA, per-residue decomposition energy, and hydrogen bonds.Results: Based on the IC50 (mM), LSD (0.35) and 5-MeO-DMT (3.47) present the capacity to be inhibitors of CYP2D6. Based on the MMGBSA (kcal/mol), LSD showed the highest binding affinities for all enzymes, while mescaline showed the lowest. The strong interaction of LSD with CYP2A6 is mediated by a hydrogen bond established with the protein residue Asn297. For interaction with CYP2B6, the residues Thr302 and Lys479 were important in mediating the interaction with 5-MeO-DMT and LSD. Key residues mediating the interaction of 5-MeO-DMT and LSD with CYP2D6 included Phe120, Leu213, and Phe483. For interaction with CYP2E1, residues Phe207, Phe298, and Thr303 are important; and for CYP3A4, an important hydrogen bond between LSD and Ala370 was identified. Conclusions: Both LSD and 5-MeO-DMT are predicted to have strong potential to be CYP2D6 inhibitors. A strong interaction was also identified in silico between LSD and CYP2A6. |
id |
RCAP_7f99f82be99b74cea7681b3fc1d0115e |
---|---|
oai_identifier_str |
oai:publicacoes.cespu.pt:article/237 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymesPosterBackground: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT), lysergic acid diethylamide (LSD), and mescaline are classic hallucinogens known for their recreational use, which increased in the last decades. Despite some available data on the metabolism of these drugs [1-3], a scientific gap exists regarding their possible interactions with CYP450 enzymes. Nevertheless, this information is of crucial relevance to predict drug-drug interactions and understand toxicological phenomena, in particular interindividual variability. Objective: This study aimed to evaluate in vitro and in silico the interaction of 5-MeO-DMT, LSD, and mescaline with the enzymes CYP2A6/2B6/2D6/2E1/3A4. Methods: The in vitro assessment of CYP450 inhibition was performed using the Vivid®CYP450 screening kits. IC50 was calculated using GraphPad Prism 9.3.0. For in silico assessment, molecular dynamics were performed using the PMEMD.cuda module in AMBER16. Calculations were made on the last 100 ns of the trajectory (stable zone) to assess the interaction mode/strength between enzyme and ligand, namely MMGBSA, per-residue decomposition energy, and hydrogen bonds.Results: Based on the IC50 (mM), LSD (0.35) and 5-MeO-DMT (3.47) present the capacity to be inhibitors of CYP2D6. Based on the MMGBSA (kcal/mol), LSD showed the highest binding affinities for all enzymes, while mescaline showed the lowest. The strong interaction of LSD with CYP2A6 is mediated by a hydrogen bond established with the protein residue Asn297. For interaction with CYP2B6, the residues Thr302 and Lys479 were important in mediating the interaction with 5-MeO-DMT and LSD. Key residues mediating the interaction of 5-MeO-DMT and LSD with CYP2D6 included Phe120, Leu213, and Phe483. For interaction with CYP2E1, residues Phe207, Phe298, and Thr303 are important; and for CYP3A4, an important hydrogen bond between LSD and Ala370 was identified. Conclusions: Both LSD and 5-MeO-DMT are predicted to have strong potential to be CYP2D6 inhibitors. A strong interaction was also identified in silico between LSD and CYP2A6.IUCS-CESPU Publishing2024-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.48797/sl.2024.237https://doi.org/10.48797/sl.2024.237Scientific Letters; Vol. 1 No. Sup 1 (2024)2795-5117reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://publicacoes.cespu.pt/index.php/sl/article/view/237https://publicacoes.cespu.pt/index.php/sl/article/view/237/246Copyright (c) 2024 Andreia Machado Brito-da-Costa, Mariana Carvalho, Ricardo Jorge Dinis-Oliveira, Áurea Madureira-Carvalho, Sérgio F. Sousa, Diana Dias da Silvainfo:eu-repo/semantics/openAccessMachado Brito-da-Costa, AndreiaCarvalho, MarianaDinis-Oliveira, Ricardo JorgeMadureira-Carvalho, ÁureaF. Sousa, SérgioDias da Silva, Diana2024-05-04T08:47:23Zoai:publicacoes.cespu.pt:article/237Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-04T08:47:23Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
title |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
spellingShingle |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes Machado Brito-da-Costa, Andreia Poster |
title_short |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
title_full |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
title_fullStr |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
title_full_unstemmed |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
title_sort |
In vitro and in silico evaluation of 5-MeO-DMT, LSD, and mescaline’s interaction with CYP450 enzymes |
author |
Machado Brito-da-Costa, Andreia |
author_facet |
Machado Brito-da-Costa, Andreia Carvalho, Mariana Dinis-Oliveira, Ricardo Jorge Madureira-Carvalho, Áurea F. Sousa, Sérgio Dias da Silva, Diana |
author_role |
author |
author2 |
Carvalho, Mariana Dinis-Oliveira, Ricardo Jorge Madureira-Carvalho, Áurea F. Sousa, Sérgio Dias da Silva, Diana |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Machado Brito-da-Costa, Andreia Carvalho, Mariana Dinis-Oliveira, Ricardo Jorge Madureira-Carvalho, Áurea F. Sousa, Sérgio Dias da Silva, Diana |
dc.subject.por.fl_str_mv |
Poster |
topic |
Poster |
description |
Background: 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT), lysergic acid diethylamide (LSD), and mescaline are classic hallucinogens known for their recreational use, which increased in the last decades. Despite some available data on the metabolism of these drugs [1-3], a scientific gap exists regarding their possible interactions with CYP450 enzymes. Nevertheless, this information is of crucial relevance to predict drug-drug interactions and understand toxicological phenomena, in particular interindividual variability. Objective: This study aimed to evaluate in vitro and in silico the interaction of 5-MeO-DMT, LSD, and mescaline with the enzymes CYP2A6/2B6/2D6/2E1/3A4. Methods: The in vitro assessment of CYP450 inhibition was performed using the Vivid®CYP450 screening kits. IC50 was calculated using GraphPad Prism 9.3.0. For in silico assessment, molecular dynamics were performed using the PMEMD.cuda module in AMBER16. Calculations were made on the last 100 ns of the trajectory (stable zone) to assess the interaction mode/strength between enzyme and ligand, namely MMGBSA, per-residue decomposition energy, and hydrogen bonds.Results: Based on the IC50 (mM), LSD (0.35) and 5-MeO-DMT (3.47) present the capacity to be inhibitors of CYP2D6. Based on the MMGBSA (kcal/mol), LSD showed the highest binding affinities for all enzymes, while mescaline showed the lowest. The strong interaction of LSD with CYP2A6 is mediated by a hydrogen bond established with the protein residue Asn297. For interaction with CYP2B6, the residues Thr302 and Lys479 were important in mediating the interaction with 5-MeO-DMT and LSD. Key residues mediating the interaction of 5-MeO-DMT and LSD with CYP2D6 included Phe120, Leu213, and Phe483. For interaction with CYP2E1, residues Phe207, Phe298, and Thr303 are important; and for CYP3A4, an important hydrogen bond between LSD and Ala370 was identified. Conclusions: Both LSD and 5-MeO-DMT are predicted to have strong potential to be CYP2D6 inhibitors. A strong interaction was also identified in silico between LSD and CYP2A6. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.48797/sl.2024.237 https://doi.org/10.48797/sl.2024.237 |
url |
https://doi.org/10.48797/sl.2024.237 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://publicacoes.cespu.pt/index.php/sl/article/view/237 https://publicacoes.cespu.pt/index.php/sl/article/view/237/246 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IUCS-CESPU Publishing |
publisher.none.fl_str_mv |
IUCS-CESPU Publishing |
dc.source.none.fl_str_mv |
Scientific Letters; Vol. 1 No. Sup 1 (2024) 2795-5117 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543357539287040 |