pH responsive biomineralization onto chitosan grafted biodegradable substrates
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/14295 |
Resumo: | Bioactive composites that enable the formation of an apatite layer onto the surface are important in the development of osteoconductive biomaterials in orthopaedic applications. In this work, the surface of biodegradable and bioactive substrates, composed of poly(L-lactic acid) (PLLA) reinforced with Bioglass , was modified by coupling chitosan to the surface, using plasma activation. The wettability of the modified films was analysed by contact angle (CA) measurements as a function of pH. It was found that this surface property changed significantly with pH. Moreover, the apatite formation on the surface upon immersion of the modified films in a simulated body fluid (SBF) solution was analysed at pH 5.4 and pH 7.4 by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). It was found that such modification, together with the effect of pH, could block the formation of apatite onto the biodegradable substrate upon immersion in a simulated body fluid solution when the pH changed to 5.4. On the other hand, a dense apatite layer was formed at pH 7.4. For the unmodified substrates an apatite layer was formed at both pHs. These results suggest that the formation of apatite or possibly other kinds of minerals could be controlled by such a smart surface, in this case pH-responsive. |
id |
RCAP_80a13ea82c6a049fb017bc1051976392 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/14295 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
pH responsive biomineralization onto chitosan grafted biodegradable substratesScience & TechnologyBioactive composites that enable the formation of an apatite layer onto the surface are important in the development of osteoconductive biomaterials in orthopaedic applications. In this work, the surface of biodegradable and bioactive substrates, composed of poly(L-lactic acid) (PLLA) reinforced with Bioglass , was modified by coupling chitosan to the surface, using plasma activation. The wettability of the modified films was analysed by contact angle (CA) measurements as a function of pH. It was found that this surface property changed significantly with pH. Moreover, the apatite formation on the surface upon immersion of the modified films in a simulated body fluid (SBF) solution was analysed at pH 5.4 and pH 7.4 by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). It was found that such modification, together with the effect of pH, could block the formation of apatite onto the biodegradable substrate upon immersion in a simulated body fluid solution when the pH changed to 5.4. On the other hand, a dense apatite layer was formed at pH 7.4. For the unmodified substrates an apatite layer was formed at both pHs. These results suggest that the formation of apatite or possibly other kinds of minerals could be controlled by such a smart surface, in this case pH-responsive.Royal Society of ChemistryUniversidade do MinhoDias, Catarina I.Mano, J. F.Alves, N. M.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/14295eng0959-942810.1039/b800776dhttp://pubs.rsc.org/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:58Zoai:repositorium.sdum.uminho.pt:1822/14295Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:21.802216Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
title |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
spellingShingle |
pH responsive biomineralization onto chitosan grafted biodegradable substrates Dias, Catarina I. Science & Technology |
title_short |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
title_full |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
title_fullStr |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
title_full_unstemmed |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
title_sort |
pH responsive biomineralization onto chitosan grafted biodegradable substrates |
author |
Dias, Catarina I. |
author_facet |
Dias, Catarina I. Mano, J. F. Alves, N. M. |
author_role |
author |
author2 |
Mano, J. F. Alves, N. M. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Dias, Catarina I. Mano, J. F. Alves, N. M. |
dc.subject.por.fl_str_mv |
Science & Technology |
topic |
Science & Technology |
description |
Bioactive composites that enable the formation of an apatite layer onto the surface are important in the development of osteoconductive biomaterials in orthopaedic applications. In this work, the surface of biodegradable and bioactive substrates, composed of poly(L-lactic acid) (PLLA) reinforced with Bioglass , was modified by coupling chitosan to the surface, using plasma activation. The wettability of the modified films was analysed by contact angle (CA) measurements as a function of pH. It was found that this surface property changed significantly with pH. Moreover, the apatite formation on the surface upon immersion of the modified films in a simulated body fluid (SBF) solution was analysed at pH 5.4 and pH 7.4 by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). It was found that such modification, together with the effect of pH, could block the formation of apatite onto the biodegradable substrate upon immersion in a simulated body fluid solution when the pH changed to 5.4. On the other hand, a dense apatite layer was formed at pH 7.4. For the unmodified substrates an apatite layer was formed at both pHs. These results suggest that the formation of apatite or possibly other kinds of minerals could be controlled by such a smart surface, in this case pH-responsive. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/14295 |
url |
http://hdl.handle.net/1822/14295 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0959-9428 10.1039/b800776d http://pubs.rsc.org/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133046945873920 |