The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials

Detalhes bibliográficos
Autor(a) principal: Alves, Catarina M.
Data de Publicação: 2010
Outros Autores: Reis, R. L., Hunt, J. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/20643
Resumo: Dynamic contact angle (DCA) analysis was used to investigate the kinetics and dynamics of protein interactions in a time-dependent manner for a group of organic natural-based surfaces during their initial contact with aqueous and protein solutions. Starch-based biomaterials were used to analyze the influence different materials with different surfaces had on the adsorption, desorption and configuration of proteins. Polymeric blends of starch and cellulose acetate (SCA), polycaprolactone (SPCL) and ethylene vinyl alcohol (SEVA-C) were used. The model protein systems included single protein solutions of human serum albumin, fibronectin, vitronectin and fibrinogen, and also complex solutions of human blood plasma. In the adsorption studies, very small and nearly equal advancing and receding contact angles were measured for all the materials. Highly wetting and low contact angle hysteresis, therefore, are exhibited by these surfaces. This effect was more noticeable for SCA surfaces. Moreover, the effect of protein concentration was also assessed and demonstrated to substantially affect the DCA wetting forces of SEVA-C and SPCL surfaces. In the desorption studies, during the rinsing phase with saline solution, the DCA loops became larger than that observed for the adsorption phase, which indicated increases in the contact angle hysteresis. The hysteresis of SCA and SPCL surfaces reversibly changed through the desorption phase, at the end of which, hysteresis was comparable to that of surfaces immersed in saline solution. The results indicated that adsorbed proteins could desorb more readily on SCA and SPCL than on SEVA-C. In the later case, stronger interactions such as hydrophobic forces were established and it is likely the rearrangement of protein conformation had occurred. Monitored by DCA, the evolution of hysteresis demonstrated the progressive bond strengthening between protein molecules and solid substratum, further elucidating the behaviour of proteins that regulate cellular interactions with implanted devices.
id RCAP_de3fb8abacafb8b9d0fa8e0acb8eae1d
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20643
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materialsScience & TechnologyDynamic contact angle (DCA) analysis was used to investigate the kinetics and dynamics of protein interactions in a time-dependent manner for a group of organic natural-based surfaces during their initial contact with aqueous and protein solutions. Starch-based biomaterials were used to analyze the influence different materials with different surfaces had on the adsorption, desorption and configuration of proteins. Polymeric blends of starch and cellulose acetate (SCA), polycaprolactone (SPCL) and ethylene vinyl alcohol (SEVA-C) were used. The model protein systems included single protein solutions of human serum albumin, fibronectin, vitronectin and fibrinogen, and also complex solutions of human blood plasma. In the adsorption studies, very small and nearly equal advancing and receding contact angles were measured for all the materials. Highly wetting and low contact angle hysteresis, therefore, are exhibited by these surfaces. This effect was more noticeable for SCA surfaces. Moreover, the effect of protein concentration was also assessed and demonstrated to substantially affect the DCA wetting forces of SEVA-C and SPCL surfaces. In the desorption studies, during the rinsing phase with saline solution, the DCA loops became larger than that observed for the adsorption phase, which indicated increases in the contact angle hysteresis. The hysteresis of SCA and SPCL surfaces reversibly changed through the desorption phase, at the end of which, hysteresis was comparable to that of surfaces immersed in saline solution. The results indicated that adsorbed proteins could desorb more readily on SCA and SPCL than on SEVA-C. In the later case, stronger interactions such as hydrophobic forces were established and it is likely the rearrangement of protein conformation had occurred. Monitored by DCA, the evolution of hysteresis demonstrated the progressive bond strengthening between protein molecules and solid substratum, further elucidating the behaviour of proteins that regulate cellular interactions with implanted devices.The authors acknowledge funding from the Foundation for Science and Technology (FCT), Portugal for SFRH/BD/11188/2002 and for partial funding through FEDER and POCTI programmes and EU funded Project HIPPOCRATES (NMP3-CT-2003-505758). This work was carried out under the scope of the European Network of Excellence EXPERTISSUES (NMP3-CT-2004-500283).Royal Society of ChemistryUniversidade do MinhoAlves, Catarina M.Reis, R. L.Hunt, J. A.20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20643eng1744-683X10.1039/c002972finfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:05Zoai:repositorium.sdum.uminho.pt:1822/20643Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:26.553295Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
title The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
spellingShingle The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
Alves, Catarina M.
Science & Technology
title_short The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
title_full The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
title_fullStr The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
title_full_unstemmed The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
title_sort The dynamics, kinetics and reversibility of protein adsorption onto the surface of biodegradable materials
author Alves, Catarina M.
author_facet Alves, Catarina M.
Reis, R. L.
Hunt, J. A.
author_role author
author2 Reis, R. L.
Hunt, J. A.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Alves, Catarina M.
Reis, R. L.
Hunt, J. A.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Dynamic contact angle (DCA) analysis was used to investigate the kinetics and dynamics of protein interactions in a time-dependent manner for a group of organic natural-based surfaces during their initial contact with aqueous and protein solutions. Starch-based biomaterials were used to analyze the influence different materials with different surfaces had on the adsorption, desorption and configuration of proteins. Polymeric blends of starch and cellulose acetate (SCA), polycaprolactone (SPCL) and ethylene vinyl alcohol (SEVA-C) were used. The model protein systems included single protein solutions of human serum albumin, fibronectin, vitronectin and fibrinogen, and also complex solutions of human blood plasma. In the adsorption studies, very small and nearly equal advancing and receding contact angles were measured for all the materials. Highly wetting and low contact angle hysteresis, therefore, are exhibited by these surfaces. This effect was more noticeable for SCA surfaces. Moreover, the effect of protein concentration was also assessed and demonstrated to substantially affect the DCA wetting forces of SEVA-C and SPCL surfaces. In the desorption studies, during the rinsing phase with saline solution, the DCA loops became larger than that observed for the adsorption phase, which indicated increases in the contact angle hysteresis. The hysteresis of SCA and SPCL surfaces reversibly changed through the desorption phase, at the end of which, hysteresis was comparable to that of surfaces immersed in saline solution. The results indicated that adsorbed proteins could desorb more readily on SCA and SPCL than on SEVA-C. In the later case, stronger interactions such as hydrophobic forces were established and it is likely the rearrangement of protein conformation had occurred. Monitored by DCA, the evolution of hysteresis demonstrated the progressive bond strengthening between protein molecules and solid substratum, further elucidating the behaviour of proteins that regulate cellular interactions with implanted devices.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/20643
url http://hdl.handle.net/1822/20643
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1744-683X
10.1039/c002972f
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132765912825856