Classifying Soil Type Using Radar Satellite Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/31998 |
Resumo: | The growth of the crop is dependent on soil type, apart from atmospheric and geo-location characteristics. As of now, there is no direct and costfree method to measure soil property or to classify soil type. In this work, we proposed a machine learning model to classify soil type using Sentinel-1 satellite radar images. Further, the developed classifier achieved 72.17% F1-score classifying sandy, free and clayish on a set of 65003 data points collected over one year (from Oct 2018 to Sep 2019) over 14 corn parcels near Ourique, Portugal. |
id |
RCAP_8179c099009b2b0e8aa1a535c39eebc2 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/31998 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Classifying Soil Type Using Radar Satellite ImagesRemote SensingSoil Electrical ConductivitySentinel-1, Machine LearningRandom ForestThe growth of the crop is dependent on soil type, apart from atmospheric and geo-location characteristics. As of now, there is no direct and costfree method to measure soil property or to classify soil type. In this work, we proposed a machine learning model to classify soil type using Sentinel-1 satellite radar images. Further, the developed classifier achieved 72.17% F1-score classifying sandy, free and clayish on a set of 65003 data points collected over one year (from Oct 2018 to Sep 2019) over 14 corn parcels near Ourique, Portugal.2022-05-03T14:45:05Z2022-05-032020-10-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/31998http://hdl.handle.net/10174/31998porhttps://recpad2020.uevora.pt/wp-content/uploads/2020/11/proceedings_recpad2020.pdfndndndndndndndAhmed, MD SajibGonçalves, TeresaRato, LuísMarques da Silva, José RafaelVieira, FilipePaixão, LuísSalgueiro, Pedroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:32:09Zoai:dspace.uevora.pt:10174/31998Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:21:03.863958Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Classifying Soil Type Using Radar Satellite Images |
title |
Classifying Soil Type Using Radar Satellite Images |
spellingShingle |
Classifying Soil Type Using Radar Satellite Images Ahmed, MD Sajib Remote Sensing Soil Electrical Conductivity Sentinel-1, Machine Learning Random Forest |
title_short |
Classifying Soil Type Using Radar Satellite Images |
title_full |
Classifying Soil Type Using Radar Satellite Images |
title_fullStr |
Classifying Soil Type Using Radar Satellite Images |
title_full_unstemmed |
Classifying Soil Type Using Radar Satellite Images |
title_sort |
Classifying Soil Type Using Radar Satellite Images |
author |
Ahmed, MD Sajib |
author_facet |
Ahmed, MD Sajib Gonçalves, Teresa Rato, Luís Marques da Silva, José Rafael Vieira, Filipe Paixão, Luís Salgueiro, Pedro |
author_role |
author |
author2 |
Gonçalves, Teresa Rato, Luís Marques da Silva, José Rafael Vieira, Filipe Paixão, Luís Salgueiro, Pedro |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Ahmed, MD Sajib Gonçalves, Teresa Rato, Luís Marques da Silva, José Rafael Vieira, Filipe Paixão, Luís Salgueiro, Pedro |
dc.subject.por.fl_str_mv |
Remote Sensing Soil Electrical Conductivity Sentinel-1, Machine Learning Random Forest |
topic |
Remote Sensing Soil Electrical Conductivity Sentinel-1, Machine Learning Random Forest |
description |
The growth of the crop is dependent on soil type, apart from atmospheric and geo-location characteristics. As of now, there is no direct and costfree method to measure soil property or to classify soil type. In this work, we proposed a machine learning model to classify soil type using Sentinel-1 satellite radar images. Further, the developed classifier achieved 72.17% F1-score classifying sandy, free and clayish on a set of 65003 data points collected over one year (from Oct 2018 to Sep 2019) over 14 corn parcels near Ourique, Portugal. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-30T00:00:00Z 2022-05-03T14:45:05Z 2022-05-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/31998 http://hdl.handle.net/10174/31998 |
url |
http://hdl.handle.net/10174/31998 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://recpad2020.uevora.pt/wp-content/uploads/2020/11/proceedings_recpad2020.pdf nd nd nd nd nd nd nd |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136692199751680 |