Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness

Detalhes bibliográficos
Autor(a) principal: Malá , Ivana
Data de Publicação: 2023
Outros Autores: Sládek , Václav, Habarta , Filip
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.57805/revstat.v20i5.386
Resumo: Correct identification of a probability distribution is crucial in many areas of parametric statistics, inappropriate choice of the model can result in misleading or even incorrect decisions. In the text, we study the performance of robust characteristics of skewness and kurtosis of probability distributions that are less sensitive to outliers than the characteristics based on classical product moments. We use Monte Carlo simulation to illustrate properties of various robust (mainly quantile type) characteristics of skewness and kurtosis and compare them to the L-skewness (TL-skewness) and L-kurtosis (TL-kurtosis). The bias, standard and mean squared error of estimators are compared using simulations for standard normal, Laplace, Student, gamma and beta distributions and sample sizes ranged from 10 to 500 observations. The selected distributions gain symmetric and asymmetric unimodal distributions with different tail heaviness.
id RCAP_81a04bdd4006c6ebefc1873d8a9b8554
oai_identifier_str oai:revstat:article/386
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heavinessrobust characteristicsL-momentsTL-momentsskewnesskurtosisCorrect identification of a probability distribution is crucial in many areas of parametric statistics, inappropriate choice of the model can result in misleading or even incorrect decisions. In the text, we study the performance of robust characteristics of skewness and kurtosis of probability distributions that are less sensitive to outliers than the characteristics based on classical product moments. We use Monte Carlo simulation to illustrate properties of various robust (mainly quantile type) characteristics of skewness and kurtosis and compare them to the L-skewness (TL-skewness) and L-kurtosis (TL-kurtosis). The bias, standard and mean squared error of estimators are compared using simulations for standard normal, Laplace, Student, gamma and beta distributions and sample sizes ranged from 10 to 500 observations. The selected distributions gain symmetric and asymmetric unimodal distributions with different tail heaviness.Statistics Portugal2023-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v20i5.386https://doi.org/10.57805/revstat.v20i5.386REVSTAT-Statistical Journal; Vol. 20 No. 5 (2022): REVSTAT-Statistical Journal; 529-546REVSTAT; Vol. 20 N.º 5 (2022): REVSTAT-Statistical Journal; 529-5462183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/386https://revstat.ine.pt/index.php/REVSTAT/article/view/386/599Copyright (c) 2020 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessMalá , IvanaSládek , VáclavHabarta , Filip2023-03-04T06:30:12Zoai:revstat:article/386Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T16:48:10.960369Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
title Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
spellingShingle Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
Malá , Ivana
robust characteristics
L-moments
TL-moments
skewness
kurtosis
title_short Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
title_full Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
title_fullStr Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
title_full_unstemmed Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
title_sort Comparison of Estimates Using L and TL Moments and Other Robust Characteristics of Distributional Shape and Tail Heaviness
author Malá , Ivana
author_facet Malá , Ivana
Sládek , Václav
Habarta , Filip
author_role author
author2 Sládek , Václav
Habarta , Filip
author2_role author
author
dc.contributor.author.fl_str_mv Malá , Ivana
Sládek , Václav
Habarta , Filip
dc.subject.por.fl_str_mv robust characteristics
L-moments
TL-moments
skewness
kurtosis
topic robust characteristics
L-moments
TL-moments
skewness
kurtosis
description Correct identification of a probability distribution is crucial in many areas of parametric statistics, inappropriate choice of the model can result in misleading or even incorrect decisions. In the text, we study the performance of robust characteristics of skewness and kurtosis of probability distributions that are less sensitive to outliers than the characteristics based on classical product moments. We use Monte Carlo simulation to illustrate properties of various robust (mainly quantile type) characteristics of skewness and kurtosis and compare them to the L-skewness (TL-skewness) and L-kurtosis (TL-kurtosis). The bias, standard and mean squared error of estimators are compared using simulations for standard normal, Laplace, Student, gamma and beta distributions and sample sizes ranged from 10 to 500 observations. The selected distributions gain symmetric and asymmetric unimodal distributions with different tail heaviness.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.57805/revstat.v20i5.386
https://doi.org/10.57805/revstat.v20i5.386
url https://doi.org/10.57805/revstat.v20i5.386
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revstat.ine.pt/index.php/REVSTAT/article/view/386
https://revstat.ine.pt/index.php/REVSTAT/article/view/386/599
dc.rights.driver.fl_str_mv Copyright (c) 2020 REVSTAT-Statistical Journal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 REVSTAT-Statistical Journal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Statistics Portugal
publisher.none.fl_str_mv Statistics Portugal
dc.source.none.fl_str_mv REVSTAT-Statistical Journal; Vol. 20 No. 5 (2022): REVSTAT-Statistical Journal; 529-546
REVSTAT; Vol. 20 N.º 5 (2022): REVSTAT-Statistical Journal; 529-546
2183-0371
1645-6726
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130952909193216