On the use of higher order statistics for blind source separation

Detalhes bibliográficos
Autor(a) principal: Cavalcante, Charles Casimiro
Data de Publicação: 2003
Outros Autores: Cavalcanti, Francisco Rodrigo Porto, Mota, João César Moura, Romano, João Marcos Travassos
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/69583
Resumo: The use of higher order statistics in blind source separation problem is analyzed in this work. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. In order to provide new elements for the comparison of using one or more higher order moments on adaptive solutions, two constrained algorithms are investigated. The multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different higher order statistics involved in their design. Simulation results are carried out to basis our analysis.
id UFC-7_9fbe0c29970f6b202d2fada32b15b737
oai_identifier_str oai:repositorio.ufc.br:riufc/69583
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling On the use of higher order statistics for blind source separationBlind source separationHigher order momentsKurtosis maximizationConstrained criteriaThe use of higher order statistics in blind source separation problem is analyzed in this work. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. In order to provide new elements for the comparison of using one or more higher order moments on adaptive solutions, two constrained algorithms are investigated. The multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different higher order statistics involved in their design. Simulation results are carried out to basis our analysis.Simpósio Brasileiro de Telecomunicações2022-11-29T13:35:16Z2022-11-29T13:35:16Z2003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCAVALCANTE, C. C. et al. On the use of higher order statistics for blind source separation. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 20., 2003, Rio de Janeiro. Anais... Rio de Janeiro, 2003. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/69583Cavalcante, Charles CasimiroCavalcanti, Francisco Rodrigo PortoMota, João César MouraRomano, João Marcos Travassosengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-29T13:35:16Zoai:repositorio.ufc.br:riufc/69583Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:20:18.880932Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv On the use of higher order statistics for blind source separation
title On the use of higher order statistics for blind source separation
spellingShingle On the use of higher order statistics for blind source separation
Cavalcante, Charles Casimiro
Blind source separation
Higher order moments
Kurtosis maximization
Constrained criteria
title_short On the use of higher order statistics for blind source separation
title_full On the use of higher order statistics for blind source separation
title_fullStr On the use of higher order statistics for blind source separation
title_full_unstemmed On the use of higher order statistics for blind source separation
title_sort On the use of higher order statistics for blind source separation
author Cavalcante, Charles Casimiro
author_facet Cavalcante, Charles Casimiro
Cavalcanti, Francisco Rodrigo Porto
Mota, João César Moura
Romano, João Marcos Travassos
author_role author
author2 Cavalcanti, Francisco Rodrigo Porto
Mota, João César Moura
Romano, João Marcos Travassos
author2_role author
author
author
dc.contributor.author.fl_str_mv Cavalcante, Charles Casimiro
Cavalcanti, Francisco Rodrigo Porto
Mota, João César Moura
Romano, João Marcos Travassos
dc.subject.por.fl_str_mv Blind source separation
Higher order moments
Kurtosis maximization
Constrained criteria
topic Blind source separation
Higher order moments
Kurtosis maximization
Constrained criteria
description The use of higher order statistics in blind source separation problem is analyzed in this work. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. In order to provide new elements for the comparison of using one or more higher order moments on adaptive solutions, two constrained algorithms are investigated. The multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different higher order statistics involved in their design. Simulation results are carried out to basis our analysis.
publishDate 2003
dc.date.none.fl_str_mv 2003
2022-11-29T13:35:16Z
2022-11-29T13:35:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAVALCANTE, C. C. et al. On the use of higher order statistics for blind source separation. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 20., 2003, Rio de Janeiro. Anais... Rio de Janeiro, 2003. p. 1-6.
http://www.repositorio.ufc.br/handle/riufc/69583
identifier_str_mv CAVALCANTE, C. C. et al. On the use of higher order statistics for blind source separation. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 20., 2003, Rio de Janeiro. Anais... Rio de Janeiro, 2003. p. 1-6.
url http://www.repositorio.ufc.br/handle/riufc/69583
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Simpósio Brasileiro de Telecomunicações
publisher.none.fl_str_mv Simpósio Brasileiro de Telecomunicações
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028761286737920