On the use of higher order statistics for blind source separation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/69583 |
Resumo: | The use of higher order statistics in blind source separation problem is analyzed in this work. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. In order to provide new elements for the comparison of using one or more higher order moments on adaptive solutions, two constrained algorithms are investigated. The multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different higher order statistics involved in their design. Simulation results are carried out to basis our analysis. |
id |
UFC-7_9fbe0c29970f6b202d2fada32b15b737 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/69583 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
On the use of higher order statistics for blind source separationBlind source separationHigher order momentsKurtosis maximizationConstrained criteriaThe use of higher order statistics in blind source separation problem is analyzed in this work. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. In order to provide new elements for the comparison of using one or more higher order moments on adaptive solutions, two constrained algorithms are investigated. The multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different higher order statistics involved in their design. Simulation results are carried out to basis our analysis.Simpósio Brasileiro de Telecomunicações2022-11-29T13:35:16Z2022-11-29T13:35:16Z2003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCAVALCANTE, C. C. et al. On the use of higher order statistics for blind source separation. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 20., 2003, Rio de Janeiro. Anais... Rio de Janeiro, 2003. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/69583Cavalcante, Charles CasimiroCavalcanti, Francisco Rodrigo PortoMota, João César MouraRomano, João Marcos Travassosengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-11-29T13:35:16Zoai:repositorio.ufc.br:riufc/69583Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:20:18.880932Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
On the use of higher order statistics for blind source separation |
title |
On the use of higher order statistics for blind source separation |
spellingShingle |
On the use of higher order statistics for blind source separation Cavalcante, Charles Casimiro Blind source separation Higher order moments Kurtosis maximization Constrained criteria |
title_short |
On the use of higher order statistics for blind source separation |
title_full |
On the use of higher order statistics for blind source separation |
title_fullStr |
On the use of higher order statistics for blind source separation |
title_full_unstemmed |
On the use of higher order statistics for blind source separation |
title_sort |
On the use of higher order statistics for blind source separation |
author |
Cavalcante, Charles Casimiro |
author_facet |
Cavalcante, Charles Casimiro Cavalcanti, Francisco Rodrigo Porto Mota, João César Moura Romano, João Marcos Travassos |
author_role |
author |
author2 |
Cavalcanti, Francisco Rodrigo Porto Mota, João César Moura Romano, João Marcos Travassos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cavalcante, Charles Casimiro Cavalcanti, Francisco Rodrigo Porto Mota, João César Moura Romano, João Marcos Travassos |
dc.subject.por.fl_str_mv |
Blind source separation Higher order moments Kurtosis maximization Constrained criteria |
topic |
Blind source separation Higher order moments Kurtosis maximization Constrained criteria |
description |
The use of higher order statistics in blind source separation problem is analyzed in this work. Despite the well known fact that they are necessary to provide source separation in a general framework, their impact on the performance of adaptive solutions is a still open research field. In order to provide new elements for the comparison of using one or more higher order moments on adaptive solutions, two constrained algorithms are investigated. The multiuser kurtosis algorithm (MUK) and the multiuser constrained fitting probability density function algorithm (MU-CFPA) are used due to the desired characteristics of different higher order statistics involved in their design. Simulation results are carried out to basis our analysis. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 2022-11-29T13:35:16Z 2022-11-29T13:35:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CAVALCANTE, C. C. et al. On the use of higher order statistics for blind source separation. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 20., 2003, Rio de Janeiro. Anais... Rio de Janeiro, 2003. p. 1-6. http://www.repositorio.ufc.br/handle/riufc/69583 |
identifier_str_mv |
CAVALCANTE, C. C. et al. On the use of higher order statistics for blind source separation. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 20., 2003, Rio de Janeiro. Anais... Rio de Janeiro, 2003. p. 1-6. |
url |
http://www.repositorio.ufc.br/handle/riufc/69583 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Simpósio Brasileiro de Telecomunicações |
publisher.none.fl_str_mv |
Simpósio Brasileiro de Telecomunicações |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028761286737920 |