Towards a predictive maintenance methodology of hydraulic pumps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/31362 |
Resumo: | Hydraulic pumps, essential elements in water supply systems, are mainly responsible for the high energy consumption associated with these systems. It is, therefore, relevant to keep the pumps running in their best possible conditions in order to avoid further consumption and costs, and also to anticipate possible pump failures. The best strategy to anticipate the occurrence of failures is to implement preventive and predictive maintenance plans, instead of corrective maintenance that is still widely applied. Thus, with the goal of developing a predictive maintenance methodology applied to hydraulic pumps, this dissertation aims to explore and investigate the applicability of two techniques that can be integrated into a maintenance plan: the detection and classification of failures and the estimation of the remaining useful life (RUL) of the pump. To implement the proposed tasks, simulated data and measured data from real systems were used, taken from online data repositories, with values recorded by sensors and with the identified condition of the system. The first technique allowed, through sensor data with the respectively identified faults, to train classification algorithms able to identify failures. In the first of the evaluated case studies, the best of the implemented algorithms identified the failures associated with the pump data with an accuracy of 82.9%, whereas, in the second of the evaluated case studies, the algorithm that presented the best performance obtained an accuracy of 94.6% in identifying the failure mode associated with the pump. The decision tree and ensemble trees algorithms proved to be the most suitable for the studied purpose. The second technique allowed to estimate RUL values from sensor data recorded from normal operation to system failure. Although the first RUL implemented case study was an engine, the second case study was a water pump. The methodology of the RUL model proved to be relevant because it managed, even with some deviations from the true values, to estimate acceptable values of RUL. An economic analysis was also carried out, highlighting the relevance of applying RUL estimation models in predictive maintenance methodologies for hydraulic pumps |
id |
RCAP_850cb167f63399c4944adc7e6dc15235 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/31362 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Towards a predictive maintenance methodology of hydraulic pumpsHydraulic pumpsMaintenanceFault detection and classificationRemaining useful life estimationHydraulic pumps, essential elements in water supply systems, are mainly responsible for the high energy consumption associated with these systems. It is, therefore, relevant to keep the pumps running in their best possible conditions in order to avoid further consumption and costs, and also to anticipate possible pump failures. The best strategy to anticipate the occurrence of failures is to implement preventive and predictive maintenance plans, instead of corrective maintenance that is still widely applied. Thus, with the goal of developing a predictive maintenance methodology applied to hydraulic pumps, this dissertation aims to explore and investigate the applicability of two techniques that can be integrated into a maintenance plan: the detection and classification of failures and the estimation of the remaining useful life (RUL) of the pump. To implement the proposed tasks, simulated data and measured data from real systems were used, taken from online data repositories, with values recorded by sensors and with the identified condition of the system. The first technique allowed, through sensor data with the respectively identified faults, to train classification algorithms able to identify failures. In the first of the evaluated case studies, the best of the implemented algorithms identified the failures associated with the pump data with an accuracy of 82.9%, whereas, in the second of the evaluated case studies, the algorithm that presented the best performance obtained an accuracy of 94.6% in identifying the failure mode associated with the pump. The decision tree and ensemble trees algorithms proved to be the most suitable for the studied purpose. The second technique allowed to estimate RUL values from sensor data recorded from normal operation to system failure. Although the first RUL implemented case study was an engine, the second case study was a water pump. The methodology of the RUL model proved to be relevant because it managed, even with some deviations from the true values, to estimate acceptable values of RUL. An economic analysis was also carried out, highlighting the relevance of applying RUL estimation models in predictive maintenance methodologies for hydraulic pumpsAs bombas hidráulicas, elementos essenciais nos sistemas de abastecimento de água, são os principais responsáveis pelos elevados consumos energéticos associados a estes sistemas. Torna-se, portanto, relevante manter as bombas a funcionar nas suas melhores condições possíveis de forma a evitar mais consumos e custos, e também antecipar possíveis falhas nas bombas. A melhor estratégia para antecipar o acontecimento de falhas passa pela implementação de planos de manutenção preventivos e preditivos, ao invés da manutenção corretiva que é ainda muito aplicada. Assim, com vista ao desenvolvimento de uma metodologia de manutenção preditiva aplicada às bombas hidráulicas, esta dissertação tem como objetivo a exploração e investigação da aplicabilidade de duas técnicas que podem ser integradas num plano de manutenção: a deteção e classificação de falhas e a estimativa do tempo de vida útil restante (RUL) de uma bomba. Para implementar as tarefas propostas utilizaram-se dados simulados e dados medidos a partir de sistemas reais, retirados de repositórios de dados online, com valores registados por sensores e com a condição do sistema identificada. A primeira técnica permitiu, através de dados de sensores com as respetivas falhas identificadas, treinar algoritmos de classificação capazes de identificar falhas. No primeiro dos casos de estudo avaliados, o melhor dos algoritmos implementados identificou as falhas associadas aos dados da bomba com uma classificação de desempenho de 82.9%, ao passo que, no segundo dos casos de estudo avaliados, o algoritmo que apresentou melhor desempenho obteve uma classificação de 94.6% na identificação do modo de falha associado à bomba. Os algoritmos de decision trees e ensemble trees demonstraram ser os mais indicados para o propósito estudado. A segunda técnica permitiu calcular previsões de valores do RUL a partir de dados de sensores registados desde uma operação normal até à falha do sistema. Apesar de o primeiro caso de estudo de implementação de RUL ter sido um motor, o segundo caso de estudo foi uma bomba de água. A metodologia do modelo de RUL demonstrou ser pertinente pois conseguiu, ainda que com alguns desvios em relação aos verdadeiros valores, estimar valores aceitáveis de RUL. Elaborou-se ainda uma análise económica que evidencia a relevância em aplicar modelos de cálculo de RUL em metodologias de manutenção preditiva de bombas hidráulicas2021-05-13T09:25:50Z2021-02-25T00:00:00Z2021-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31362engSantos, Inês Vilela dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:33Zoai:ria.ua.pt:10773/31362Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:16.115235Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Towards a predictive maintenance methodology of hydraulic pumps |
title |
Towards a predictive maintenance methodology of hydraulic pumps |
spellingShingle |
Towards a predictive maintenance methodology of hydraulic pumps Santos, Inês Vilela dos Hydraulic pumps Maintenance Fault detection and classification Remaining useful life estimation |
title_short |
Towards a predictive maintenance methodology of hydraulic pumps |
title_full |
Towards a predictive maintenance methodology of hydraulic pumps |
title_fullStr |
Towards a predictive maintenance methodology of hydraulic pumps |
title_full_unstemmed |
Towards a predictive maintenance methodology of hydraulic pumps |
title_sort |
Towards a predictive maintenance methodology of hydraulic pumps |
author |
Santos, Inês Vilela dos |
author_facet |
Santos, Inês Vilela dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos, Inês Vilela dos |
dc.subject.por.fl_str_mv |
Hydraulic pumps Maintenance Fault detection and classification Remaining useful life estimation |
topic |
Hydraulic pumps Maintenance Fault detection and classification Remaining useful life estimation |
description |
Hydraulic pumps, essential elements in water supply systems, are mainly responsible for the high energy consumption associated with these systems. It is, therefore, relevant to keep the pumps running in their best possible conditions in order to avoid further consumption and costs, and also to anticipate possible pump failures. The best strategy to anticipate the occurrence of failures is to implement preventive and predictive maintenance plans, instead of corrective maintenance that is still widely applied. Thus, with the goal of developing a predictive maintenance methodology applied to hydraulic pumps, this dissertation aims to explore and investigate the applicability of two techniques that can be integrated into a maintenance plan: the detection and classification of failures and the estimation of the remaining useful life (RUL) of the pump. To implement the proposed tasks, simulated data and measured data from real systems were used, taken from online data repositories, with values recorded by sensors and with the identified condition of the system. The first technique allowed, through sensor data with the respectively identified faults, to train classification algorithms able to identify failures. In the first of the evaluated case studies, the best of the implemented algorithms identified the failures associated with the pump data with an accuracy of 82.9%, whereas, in the second of the evaluated case studies, the algorithm that presented the best performance obtained an accuracy of 94.6% in identifying the failure mode associated with the pump. The decision tree and ensemble trees algorithms proved to be the most suitable for the studied purpose. The second technique allowed to estimate RUL values from sensor data recorded from normal operation to system failure. Although the first RUL implemented case study was an engine, the second case study was a water pump. The methodology of the RUL model proved to be relevant because it managed, even with some deviations from the true values, to estimate acceptable values of RUL. An economic analysis was also carried out, highlighting the relevance of applying RUL estimation models in predictive maintenance methodologies for hydraulic pumps |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-13T09:25:50Z 2021-02-25T00:00:00Z 2021-02-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/31362 |
url |
http://hdl.handle.net/10773/31362 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137687751360512 |