Towards a predictive maintenance methodology of hydraulic pumps

Detalhes bibliográficos
Autor(a) principal: Santos, Inês Vilela dos
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31362
Resumo: Hydraulic pumps, essential elements in water supply systems, are mainly responsible for the high energy consumption associated with these systems. It is, therefore, relevant to keep the pumps running in their best possible conditions in order to avoid further consumption and costs, and also to anticipate possible pump failures. The best strategy to anticipate the occurrence of failures is to implement preventive and predictive maintenance plans, instead of corrective maintenance that is still widely applied. Thus, with the goal of developing a predictive maintenance methodology applied to hydraulic pumps, this dissertation aims to explore and investigate the applicability of two techniques that can be integrated into a maintenance plan: the detection and classification of failures and the estimation of the remaining useful life (RUL) of the pump. To implement the proposed tasks, simulated data and measured data from real systems were used, taken from online data repositories, with values recorded by sensors and with the identified condition of the system. The first technique allowed, through sensor data with the respectively identified faults, to train classification algorithms able to identify failures. In the first of the evaluated case studies, the best of the implemented algorithms identified the failures associated with the pump data with an accuracy of 82.9%, whereas, in the second of the evaluated case studies, the algorithm that presented the best performance obtained an accuracy of 94.6% in identifying the failure mode associated with the pump. The decision tree and ensemble trees algorithms proved to be the most suitable for the studied purpose. The second technique allowed to estimate RUL values from sensor data recorded from normal operation to system failure. Although the first RUL implemented case study was an engine, the second case study was a water pump. The methodology of the RUL model proved to be relevant because it managed, even with some deviations from the true values, to estimate acceptable values of RUL. An economic analysis was also carried out, highlighting the relevance of applying RUL estimation models in predictive maintenance methodologies for hydraulic pumps
id RCAP_850cb167f63399c4944adc7e6dc15235
oai_identifier_str oai:ria.ua.pt:10773/31362
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Towards a predictive maintenance methodology of hydraulic pumpsHydraulic pumpsMaintenanceFault detection and classificationRemaining useful life estimationHydraulic pumps, essential elements in water supply systems, are mainly responsible for the high energy consumption associated with these systems. It is, therefore, relevant to keep the pumps running in their best possible conditions in order to avoid further consumption and costs, and also to anticipate possible pump failures. The best strategy to anticipate the occurrence of failures is to implement preventive and predictive maintenance plans, instead of corrective maintenance that is still widely applied. Thus, with the goal of developing a predictive maintenance methodology applied to hydraulic pumps, this dissertation aims to explore and investigate the applicability of two techniques that can be integrated into a maintenance plan: the detection and classification of failures and the estimation of the remaining useful life (RUL) of the pump. To implement the proposed tasks, simulated data and measured data from real systems were used, taken from online data repositories, with values recorded by sensors and with the identified condition of the system. The first technique allowed, through sensor data with the respectively identified faults, to train classification algorithms able to identify failures. In the first of the evaluated case studies, the best of the implemented algorithms identified the failures associated with the pump data with an accuracy of 82.9%, whereas, in the second of the evaluated case studies, the algorithm that presented the best performance obtained an accuracy of 94.6% in identifying the failure mode associated with the pump. The decision tree and ensemble trees algorithms proved to be the most suitable for the studied purpose. The second technique allowed to estimate RUL values from sensor data recorded from normal operation to system failure. Although the first RUL implemented case study was an engine, the second case study was a water pump. The methodology of the RUL model proved to be relevant because it managed, even with some deviations from the true values, to estimate acceptable values of RUL. An economic analysis was also carried out, highlighting the relevance of applying RUL estimation models in predictive maintenance methodologies for hydraulic pumpsAs bombas hidráulicas, elementos essenciais nos sistemas de abastecimento de água, são os principais responsáveis pelos elevados consumos energéticos associados a estes sistemas. Torna-se, portanto, relevante manter as bombas a funcionar nas suas melhores condições possíveis de forma a evitar mais consumos e custos, e também antecipar possíveis falhas nas bombas. A melhor estratégia para antecipar o acontecimento de falhas passa pela implementação de planos de manutenção preventivos e preditivos, ao invés da manutenção corretiva que é ainda muito aplicada. Assim, com vista ao desenvolvimento de uma metodologia de manutenção preditiva aplicada às bombas hidráulicas, esta dissertação tem como objetivo a exploração e investigação da aplicabilidade de duas técnicas que podem ser integradas num plano de manutenção: a deteção e classificação de falhas e a estimativa do tempo de vida útil restante (RUL) de uma bomba. Para implementar as tarefas propostas utilizaram-se dados simulados e dados medidos a partir de sistemas reais, retirados de repositórios de dados online, com valores registados por sensores e com a condição do sistema identificada. A primeira técnica permitiu, através de dados de sensores com as respetivas falhas identificadas, treinar algoritmos de classificação capazes de identificar falhas. No primeiro dos casos de estudo avaliados, o melhor dos algoritmos implementados identificou as falhas associadas aos dados da bomba com uma classificação de desempenho de 82.9%, ao passo que, no segundo dos casos de estudo avaliados, o algoritmo que apresentou melhor desempenho obteve uma classificação de 94.6% na identificação do modo de falha associado à bomba. Os algoritmos de decision trees e ensemble trees demonstraram ser os mais indicados para o propósito estudado. A segunda técnica permitiu calcular previsões de valores do RUL a partir de dados de sensores registados desde uma operação normal até à falha do sistema. Apesar de o primeiro caso de estudo de implementação de RUL ter sido um motor, o segundo caso de estudo foi uma bomba de água. A metodologia do modelo de RUL demonstrou ser pertinente pois conseguiu, ainda que com alguns desvios em relação aos verdadeiros valores, estimar valores aceitáveis de RUL. Elaborou-se ainda uma análise económica que evidencia a relevância em aplicar modelos de cálculo de RUL em metodologias de manutenção preditiva de bombas hidráulicas2021-05-13T09:25:50Z2021-02-25T00:00:00Z2021-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31362engSantos, Inês Vilela dosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:33Zoai:ria.ua.pt:10773/31362Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:16.115235Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Towards a predictive maintenance methodology of hydraulic pumps
title Towards a predictive maintenance methodology of hydraulic pumps
spellingShingle Towards a predictive maintenance methodology of hydraulic pumps
Santos, Inês Vilela dos
Hydraulic pumps
Maintenance
Fault detection and classification
Remaining useful life estimation
title_short Towards a predictive maintenance methodology of hydraulic pumps
title_full Towards a predictive maintenance methodology of hydraulic pumps
title_fullStr Towards a predictive maintenance methodology of hydraulic pumps
title_full_unstemmed Towards a predictive maintenance methodology of hydraulic pumps
title_sort Towards a predictive maintenance methodology of hydraulic pumps
author Santos, Inês Vilela dos
author_facet Santos, Inês Vilela dos
author_role author
dc.contributor.author.fl_str_mv Santos, Inês Vilela dos
dc.subject.por.fl_str_mv Hydraulic pumps
Maintenance
Fault detection and classification
Remaining useful life estimation
topic Hydraulic pumps
Maintenance
Fault detection and classification
Remaining useful life estimation
description Hydraulic pumps, essential elements in water supply systems, are mainly responsible for the high energy consumption associated with these systems. It is, therefore, relevant to keep the pumps running in their best possible conditions in order to avoid further consumption and costs, and also to anticipate possible pump failures. The best strategy to anticipate the occurrence of failures is to implement preventive and predictive maintenance plans, instead of corrective maintenance that is still widely applied. Thus, with the goal of developing a predictive maintenance methodology applied to hydraulic pumps, this dissertation aims to explore and investigate the applicability of two techniques that can be integrated into a maintenance plan: the detection and classification of failures and the estimation of the remaining useful life (RUL) of the pump. To implement the proposed tasks, simulated data and measured data from real systems were used, taken from online data repositories, with values recorded by sensors and with the identified condition of the system. The first technique allowed, through sensor data with the respectively identified faults, to train classification algorithms able to identify failures. In the first of the evaluated case studies, the best of the implemented algorithms identified the failures associated with the pump data with an accuracy of 82.9%, whereas, in the second of the evaluated case studies, the algorithm that presented the best performance obtained an accuracy of 94.6% in identifying the failure mode associated with the pump. The decision tree and ensemble trees algorithms proved to be the most suitable for the studied purpose. The second technique allowed to estimate RUL values from sensor data recorded from normal operation to system failure. Although the first RUL implemented case study was an engine, the second case study was a water pump. The methodology of the RUL model proved to be relevant because it managed, even with some deviations from the true values, to estimate acceptable values of RUL. An economic analysis was also carried out, highlighting the relevance of applying RUL estimation models in predictive maintenance methodologies for hydraulic pumps
publishDate 2021
dc.date.none.fl_str_mv 2021-05-13T09:25:50Z
2021-02-25T00:00:00Z
2021-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31362
url http://hdl.handle.net/10773/31362
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137687751360512