Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/20666 |
Resumo: | The fast growth of renewable energy sources in the residential building led to a complex problem related to the energy management system: the uncertainty associated with the forecast of photovoltaic power generation. To solve this challenge, this paper proposes a robust optimization model to obtain the optimal solution for the worst-case scenario of photovoltaic generation. A Mixed Binary Linear Programming problem is transformed into a trackable robust counterpart to provide immunity against the worst-case realization. Through the budget of uncertainty, the risk of the solution can be adjusted. The results demonstrate that the influence of Battery Energy Storage System and Electric Vehicles against uncertainties leads to higher economic gains up to 6% reduction. |
id |
RCAP_853c811db8ac32aeb60770e7d94e1528 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/20666 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV GenerationEnergy schedulingPV UncertaintyRobust OptimizationSmart BuildingThe fast growth of renewable energy sources in the residential building led to a complex problem related to the energy management system: the uncertainty associated with the forecast of photovoltaic power generation. To solve this challenge, this paper proposes a robust optimization model to obtain the optimal solution for the worst-case scenario of photovoltaic generation. A Mixed Binary Linear Programming problem is transformed into a trackable robust counterpart to provide immunity against the worst-case realization. Through the budget of uncertainty, the risk of the solution can be adjusted. The results demonstrate that the influence of Battery Energy Storage System and Electric Vehicles against uncertainties leads to higher economic gains up to 6% reduction.This work has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project BENEFICE–PTDC/EEI-EEE/29070/2017 and UIDB/00760/2020 under CEECIND/02814/2017 grant.IEEERepositório Científico do Instituto Politécnico do PortoForoozandeh, ZahraTavares, InesSoares, JoãoRamos, SérgioVale, Zita2022-07-07T08:39:57Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdftext/plain; charset=utf-8http://hdl.handle.net/10400.22/20666eng10.1109/ICEEE55327.2022.9772561info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:16:12Zoai:recipp.ipp.pt:10400.22/20666Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:40:43.152202Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
title |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
spellingShingle |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation Foroozandeh, Zahra Energy scheduling PV Uncertainty Robust Optimization Smart Building |
title_short |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
title_full |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
title_fullStr |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
title_full_unstemmed |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
title_sort |
Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation |
author |
Foroozandeh, Zahra |
author_facet |
Foroozandeh, Zahra Tavares, Ines Soares, João Ramos, Sérgio Vale, Zita |
author_role |
author |
author2 |
Tavares, Ines Soares, João Ramos, Sérgio Vale, Zita |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Foroozandeh, Zahra Tavares, Ines Soares, João Ramos, Sérgio Vale, Zita |
dc.subject.por.fl_str_mv |
Energy scheduling PV Uncertainty Robust Optimization Smart Building |
topic |
Energy scheduling PV Uncertainty Robust Optimization Smart Building |
description |
The fast growth of renewable energy sources in the residential building led to a complex problem related to the energy management system: the uncertainty associated with the forecast of photovoltaic power generation. To solve this challenge, this paper proposes a robust optimization model to obtain the optimal solution for the worst-case scenario of photovoltaic generation. A Mixed Binary Linear Programming problem is transformed into a trackable robust counterpart to provide immunity against the worst-case realization. Through the budget of uncertainty, the risk of the solution can be adjusted. The results demonstrate that the influence of Battery Energy Storage System and Electric Vehicles against uncertainties leads to higher economic gains up to 6% reduction. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-07T08:39:57Z 2022 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/20666 |
url |
http://hdl.handle.net/10400.22/20666 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ICEEE55327.2022.9772561 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/plain; charset=utf-8 |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131495569293312 |