Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation

Detalhes bibliográficos
Autor(a) principal: Foroozandeh, Zahra
Data de Publicação: 2022
Outros Autores: Tavares, Ines, Soares, João, Ramos, Sérgio, Vale, Zita
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/20666
Resumo: The fast growth of renewable energy sources in the residential building led to a complex problem related to the energy management system: the uncertainty associated with the forecast of photovoltaic power generation. To solve this challenge, this paper proposes a robust optimization model to obtain the optimal solution for the worst-case scenario of photovoltaic generation. A Mixed Binary Linear Programming problem is transformed into a trackable robust counterpart to provide immunity against the worst-case realization. Through the budget of uncertainty, the risk of the solution can be adjusted. The results demonstrate that the influence of Battery Energy Storage System and Electric Vehicles against uncertainties leads to higher economic gains up to 6% reduction.
id RCAP_853c811db8ac32aeb60770e7d94e1528
oai_identifier_str oai:recipp.ipp.pt:10400.22/20666
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV GenerationEnergy schedulingPV UncertaintyRobust OptimizationSmart BuildingThe fast growth of renewable energy sources in the residential building led to a complex problem related to the energy management system: the uncertainty associated with the forecast of photovoltaic power generation. To solve this challenge, this paper proposes a robust optimization model to obtain the optimal solution for the worst-case scenario of photovoltaic generation. A Mixed Binary Linear Programming problem is transformed into a trackable robust counterpart to provide immunity against the worst-case realization. Through the budget of uncertainty, the risk of the solution can be adjusted. The results demonstrate that the influence of Battery Energy Storage System and Electric Vehicles against uncertainties leads to higher economic gains up to 6% reduction.This work has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project BENEFICE–PTDC/EEI-EEE/29070/2017 and UIDB/00760/2020 under CEECIND/02814/2017 grant.IEEERepositório Científico do Instituto Politécnico do PortoForoozandeh, ZahraTavares, InesSoares, JoãoRamos, SérgioVale, Zita2022-07-07T08:39:57Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdftext/plain; charset=utf-8http://hdl.handle.net/10400.22/20666eng10.1109/ICEEE55327.2022.9772561info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:16:12Zoai:recipp.ipp.pt:10400.22/20666Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:40:43.152202Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
title Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
spellingShingle Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
Foroozandeh, Zahra
Energy scheduling
PV Uncertainty
Robust Optimization
Smart Building
title_short Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
title_full Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
title_fullStr Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
title_full_unstemmed Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
title_sort Robust Energy Scheduling for Smart Buildings Considering Uncertainty in PV Generation
author Foroozandeh, Zahra
author_facet Foroozandeh, Zahra
Tavares, Ines
Soares, João
Ramos, Sérgio
Vale, Zita
author_role author
author2 Tavares, Ines
Soares, João
Ramos, Sérgio
Vale, Zita
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Foroozandeh, Zahra
Tavares, Ines
Soares, João
Ramos, Sérgio
Vale, Zita
dc.subject.por.fl_str_mv Energy scheduling
PV Uncertainty
Robust Optimization
Smart Building
topic Energy scheduling
PV Uncertainty
Robust Optimization
Smart Building
description The fast growth of renewable energy sources in the residential building led to a complex problem related to the energy management system: the uncertainty associated with the forecast of photovoltaic power generation. To solve this challenge, this paper proposes a robust optimization model to obtain the optimal solution for the worst-case scenario of photovoltaic generation. A Mixed Binary Linear Programming problem is transformed into a trackable robust counterpart to provide immunity against the worst-case realization. Through the budget of uncertainty, the risk of the solution can be adjusted. The results demonstrate that the influence of Battery Energy Storage System and Electric Vehicles against uncertainties leads to higher economic gains up to 6% reduction.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-07T08:39:57Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/20666
url http://hdl.handle.net/10400.22/20666
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/ICEEE55327.2022.9772561
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/plain; charset=utf-8
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131495569293312