Energy resource management in smart buildings considering photovoltaic uncertainty

Detalhes bibliográficos
Autor(a) principal: Tavares, Inês Vieira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/19544
Resumo: O aumento do consumo energético em edifícios residenciais tem levado a um maior foco nos métodos de eficiência energética. Deste modo, surge um sistema de gestão de energia residencial que poderá permitir controlar os recursos energéticos em pequena escala dos edifícios, levando a uma diminuição significativa dos custos energéticos através de um escalonamento eficiente. No entanto, a natureza intermitente das fontes de energia renováveis resulta num problema complexo. Para resolver este desafio, esta tese propõe um escalonamento energético baseado na otimização robusta, considerando a incerteza relacionada com a produção fotovoltaica. A otimização robusta é um método emergente e eficaz para lidar com a incerteza e apresenta soluções ótimas considerando o pior cenário da incerteza, ou seja, encontra a melhor solução entre todos os piores cenários possíveis. Um problema de Programação Linear Binária é inicialmente formulado para minimizar os custos do escalonamento energético. De seguida, o objetivo desta tese é transformar o modelo determinístico num problema robusto equivalente para proporcionar-lhe imunidade contra a incerteza associada à produção fotovoltaica. O modelo determinístico é, assim, transformado num modelo do pior cenário possível. Para validar a eficiência e a eficácia do modelo, a metodologia proposta foi implementada em dois cenários sendo cada um deles constituído por três casos de estudo de escalonamento de energia, para um horizonte de escalonamento a curto prazo. Os resultados da simulação demonstram que a abordagem robusta consegue, efetivamente, minimizar os custos totais de eletricidade do edifício, mitigando, simultaneamente, os obstáculos referentes à incerteza relacionada com a produção fotovoltaica. É também demonstrado que a estratégia desenvolvida permite o ajustamento do escalonamento dos recursos energéticos do edifício de acordo com o nível de robustez selecionado.
id RCAP_b3473600120d312efd9033f3a8a27172
oai_identifier_str oai:recipp.ipp.pt:10400.22/19544
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Energy resource management in smart buildings considering photovoltaic uncertaintyEscalonamento de energiaIncerteza fotovoltaicaOtimização RobustaProgramação Linear BináriaSistema de gestão de energiaEnergy Management SystemEnergy SchedulingMixed Binary Linear ProgrammingPhotovoltaic UncertaintyRobust OptimizationO aumento do consumo energético em edifícios residenciais tem levado a um maior foco nos métodos de eficiência energética. Deste modo, surge um sistema de gestão de energia residencial que poderá permitir controlar os recursos energéticos em pequena escala dos edifícios, levando a uma diminuição significativa dos custos energéticos através de um escalonamento eficiente. No entanto, a natureza intermitente das fontes de energia renováveis resulta num problema complexo. Para resolver este desafio, esta tese propõe um escalonamento energético baseado na otimização robusta, considerando a incerteza relacionada com a produção fotovoltaica. A otimização robusta é um método emergente e eficaz para lidar com a incerteza e apresenta soluções ótimas considerando o pior cenário da incerteza, ou seja, encontra a melhor solução entre todos os piores cenários possíveis. Um problema de Programação Linear Binária é inicialmente formulado para minimizar os custos do escalonamento energético. De seguida, o objetivo desta tese é transformar o modelo determinístico num problema robusto equivalente para proporcionar-lhe imunidade contra a incerteza associada à produção fotovoltaica. O modelo determinístico é, assim, transformado num modelo do pior cenário possível. Para validar a eficiência e a eficácia do modelo, a metodologia proposta foi implementada em dois cenários sendo cada um deles constituído por três casos de estudo de escalonamento de energia, para um horizonte de escalonamento a curto prazo. Os resultados da simulação demonstram que a abordagem robusta consegue, efetivamente, minimizar os custos totais de eletricidade do edifício, mitigando, simultaneamente, os obstáculos referentes à incerteza relacionada com a produção fotovoltaica. É também demonstrado que a estratégia desenvolvida permite o ajustamento do escalonamento dos recursos energéticos do edifício de acordo com o nível de robustez selecionado.The increase of energy demand in residential buildings has led to a higher focus on energy efficiency methods. This way, the home energy management system arises to control small-scale energy resources on buildings allowing a significant electricity bill decrease throughout efficient scheduling. However, the intermittent and uncertain nature of renewable energy sources results in a complex problem. To solve this challenge, this thesis proposes robust optimization-based scheduling considering the uncertainty in solar generation. Robust Optimization is a very recent and effective technique to deal with uncertainty and provides optimal solutions for the worst-case realization of the uncertain parameter, i.e., it finds the best solution among all the worst scenarios. A Mixed Binary Linear Programming problem is initially formulated to minimize the costs of the energy resource scheduling. Then, this thesis's purpose is to transform the deterministic model into a trackable robust counterpart problem to provide immunity against the photovoltaic output uncertainty. The deterministic model is transformed into the worst-case model. To validate the model’s efficiency and effectiveness, the proposed methodology was implemented in two scenarios with three different energy scheduling case studies for a short-term scheduling horizon. The simulation results demonstrate that the robust approach can effectively minimize the electricity costs of the building while mitigating the drawbacks associated with solar uncertainty. It also proves that the proposed strategy adjusts the energy scheduling according to the selected robustness level.Ramos, Sérgio Filipe CarvalhoRepositório Científico do Instituto Politécnico do PortoTavares, Inês Vieira2022-01-18T11:27:57Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/19544TID:202796450enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:14:07Zoai:recipp.ipp.pt:10400.22/19544Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:39:34.856904Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Energy resource management in smart buildings considering photovoltaic uncertainty
title Energy resource management in smart buildings considering photovoltaic uncertainty
spellingShingle Energy resource management in smart buildings considering photovoltaic uncertainty
Tavares, Inês Vieira
Escalonamento de energia
Incerteza fotovoltaica
Otimização Robusta
Programação Linear Binária
Sistema de gestão de energia
Energy Management System
Energy Scheduling
Mixed Binary Linear Programming
Photovoltaic Uncertainty
Robust Optimization
title_short Energy resource management in smart buildings considering photovoltaic uncertainty
title_full Energy resource management in smart buildings considering photovoltaic uncertainty
title_fullStr Energy resource management in smart buildings considering photovoltaic uncertainty
title_full_unstemmed Energy resource management in smart buildings considering photovoltaic uncertainty
title_sort Energy resource management in smart buildings considering photovoltaic uncertainty
author Tavares, Inês Vieira
author_facet Tavares, Inês Vieira
author_role author
dc.contributor.none.fl_str_mv Ramos, Sérgio Filipe Carvalho
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Tavares, Inês Vieira
dc.subject.por.fl_str_mv Escalonamento de energia
Incerteza fotovoltaica
Otimização Robusta
Programação Linear Binária
Sistema de gestão de energia
Energy Management System
Energy Scheduling
Mixed Binary Linear Programming
Photovoltaic Uncertainty
Robust Optimization
topic Escalonamento de energia
Incerteza fotovoltaica
Otimização Robusta
Programação Linear Binária
Sistema de gestão de energia
Energy Management System
Energy Scheduling
Mixed Binary Linear Programming
Photovoltaic Uncertainty
Robust Optimization
description O aumento do consumo energético em edifícios residenciais tem levado a um maior foco nos métodos de eficiência energética. Deste modo, surge um sistema de gestão de energia residencial que poderá permitir controlar os recursos energéticos em pequena escala dos edifícios, levando a uma diminuição significativa dos custos energéticos através de um escalonamento eficiente. No entanto, a natureza intermitente das fontes de energia renováveis resulta num problema complexo. Para resolver este desafio, esta tese propõe um escalonamento energético baseado na otimização robusta, considerando a incerteza relacionada com a produção fotovoltaica. A otimização robusta é um método emergente e eficaz para lidar com a incerteza e apresenta soluções ótimas considerando o pior cenário da incerteza, ou seja, encontra a melhor solução entre todos os piores cenários possíveis. Um problema de Programação Linear Binária é inicialmente formulado para minimizar os custos do escalonamento energético. De seguida, o objetivo desta tese é transformar o modelo determinístico num problema robusto equivalente para proporcionar-lhe imunidade contra a incerteza associada à produção fotovoltaica. O modelo determinístico é, assim, transformado num modelo do pior cenário possível. Para validar a eficiência e a eficácia do modelo, a metodologia proposta foi implementada em dois cenários sendo cada um deles constituído por três casos de estudo de escalonamento de energia, para um horizonte de escalonamento a curto prazo. Os resultados da simulação demonstram que a abordagem robusta consegue, efetivamente, minimizar os custos totais de eletricidade do edifício, mitigando, simultaneamente, os obstáculos referentes à incerteza relacionada com a produção fotovoltaica. É também demonstrado que a estratégia desenvolvida permite o ajustamento do escalonamento dos recursos energéticos do edifício de acordo com o nível de robustez selecionado.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2022-01-18T11:27:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/19544
TID:202796450
url http://hdl.handle.net/10400.22/19544
identifier_str_mv TID:202796450
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131484111503360