Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator

Detalhes bibliográficos
Autor(a) principal: Trigo, Pedro Gil Dias
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/42277
Resumo: Solution processing of amorphous metal oxides has been used as an option to implement in flexible electronics, allowing to reduce the associated costs, when compared with vacuum processes. Recent research has been more focused on the semiconductor layer; however, the dielectric layer is equally important since its responsible for the stability and electric performance of the device. This work aims to evaluate hybrid dielectric thin films, using aluminium oxide and different types of polyvinylpyrrolidone (PVP), both obtained by solution process using solution combustion synthesis (SCS), to study the influence of the amount of organic material used in the insulator layer, as well as to study the influence of the hybrid insulator obtained in oxide thin film transistors (TFTs) using indium-gallium-zinc-oxide (IGZO) and zinc-tin-oxide (ZTO) as semiconductor layer. The insulator layer was obtained using aluminium nitrate nonahydrate and polyvinylpyrrolidone (PVP) with different molecular weights (10000 and 40000) and different percentages as precursor solutions, using urea as fuel and 2-methoxyethanol as solvent. The best hybrid dielectric was obtained with 0.8 % PVP 40000 (weight per volume), showing a breakdown voltage of 1.1 MV/cm, low density leakage current of 9.6 × 10-5 A/cm2, capacitance per area of 123 nF/cm2, thickness of 49.35 nm, annealed at 200 °C for 30 minutes. Moreover, the roughness study obtained using atomic force microscopy showed highly smooth surface, resulting in improvement dielectric-semiconductor interface, while still maintaining an amorphous nature. These characteristics allowed this hybrid dielectric, lead to enhanced TFTs electrical properties. The best performing thin films were applied in IGZO TFTs as hybrid dielectrics. The optimized TFTs show good reproducibility with an average mobility of 40.24 ± 1.1 cm2∙V-1∙s-1, subthreshold slope of 0.169 ± 0.012 V∙dec-1, a turn-on voltage of 0.078 ± 0.004 V and a low operating voltage (maximum 2 V).
id RCAP_85441e3841e93af048019e2b8f0cb318
oai_identifier_str oai:run.unl.pt:10362/42277
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulatoraluminium oxidepolyvinylpyrrolidonehybrid dielectricssolution combustion synthesissolution TFTslow operating voltageDomínio/Área Científica::Engenharia e Tecnologia::Engenharia dos MateriaisSolution processing of amorphous metal oxides has been used as an option to implement in flexible electronics, allowing to reduce the associated costs, when compared with vacuum processes. Recent research has been more focused on the semiconductor layer; however, the dielectric layer is equally important since its responsible for the stability and electric performance of the device. This work aims to evaluate hybrid dielectric thin films, using aluminium oxide and different types of polyvinylpyrrolidone (PVP), both obtained by solution process using solution combustion synthesis (SCS), to study the influence of the amount of organic material used in the insulator layer, as well as to study the influence of the hybrid insulator obtained in oxide thin film transistors (TFTs) using indium-gallium-zinc-oxide (IGZO) and zinc-tin-oxide (ZTO) as semiconductor layer. The insulator layer was obtained using aluminium nitrate nonahydrate and polyvinylpyrrolidone (PVP) with different molecular weights (10000 and 40000) and different percentages as precursor solutions, using urea as fuel and 2-methoxyethanol as solvent. The best hybrid dielectric was obtained with 0.8 % PVP 40000 (weight per volume), showing a breakdown voltage of 1.1 MV/cm, low density leakage current of 9.6 × 10-5 A/cm2, capacitance per area of 123 nF/cm2, thickness of 49.35 nm, annealed at 200 °C for 30 minutes. Moreover, the roughness study obtained using atomic force microscopy showed highly smooth surface, resulting in improvement dielectric-semiconductor interface, while still maintaining an amorphous nature. These characteristics allowed this hybrid dielectric, lead to enhanced TFTs electrical properties. The best performing thin films were applied in IGZO TFTs as hybrid dielectrics. The optimized TFTs show good reproducibility with an average mobility of 40.24 ± 1.1 cm2∙V-1∙s-1, subthreshold slope of 0.169 ± 0.012 V∙dec-1, a turn-on voltage of 0.078 ± 0.004 V and a low operating voltage (maximum 2 V).Branquinho, RitaRUNTrigo, Pedro Gil Dias2018-07-23T08:09:13Z2017-1120172017-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/42277TID:202315983enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:22:43Zoai:run.unl.pt:10362/42277Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:31:26.585725Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
title Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
spellingShingle Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
Trigo, Pedro Gil Dias
aluminium oxide
polyvinylpyrrolidone
hybrid dielectrics
solution combustion synthesis
solution TFTs
low operating voltage
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
title_short Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
title_full Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
title_fullStr Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
title_full_unstemmed Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
title_sort Oxide transistors produced by Combustion Synthesis: Influence of the PVP on the properties of the insulator
author Trigo, Pedro Gil Dias
author_facet Trigo, Pedro Gil Dias
author_role author
dc.contributor.none.fl_str_mv Branquinho, Rita
RUN
dc.contributor.author.fl_str_mv Trigo, Pedro Gil Dias
dc.subject.por.fl_str_mv aluminium oxide
polyvinylpyrrolidone
hybrid dielectrics
solution combustion synthesis
solution TFTs
low operating voltage
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
topic aluminium oxide
polyvinylpyrrolidone
hybrid dielectrics
solution combustion synthesis
solution TFTs
low operating voltage
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia dos Materiais
description Solution processing of amorphous metal oxides has been used as an option to implement in flexible electronics, allowing to reduce the associated costs, when compared with vacuum processes. Recent research has been more focused on the semiconductor layer; however, the dielectric layer is equally important since its responsible for the stability and electric performance of the device. This work aims to evaluate hybrid dielectric thin films, using aluminium oxide and different types of polyvinylpyrrolidone (PVP), both obtained by solution process using solution combustion synthesis (SCS), to study the influence of the amount of organic material used in the insulator layer, as well as to study the influence of the hybrid insulator obtained in oxide thin film transistors (TFTs) using indium-gallium-zinc-oxide (IGZO) and zinc-tin-oxide (ZTO) as semiconductor layer. The insulator layer was obtained using aluminium nitrate nonahydrate and polyvinylpyrrolidone (PVP) with different molecular weights (10000 and 40000) and different percentages as precursor solutions, using urea as fuel and 2-methoxyethanol as solvent. The best hybrid dielectric was obtained with 0.8 % PVP 40000 (weight per volume), showing a breakdown voltage of 1.1 MV/cm, low density leakage current of 9.6 × 10-5 A/cm2, capacitance per area of 123 nF/cm2, thickness of 49.35 nm, annealed at 200 °C for 30 minutes. Moreover, the roughness study obtained using atomic force microscopy showed highly smooth surface, resulting in improvement dielectric-semiconductor interface, while still maintaining an amorphous nature. These characteristics allowed this hybrid dielectric, lead to enhanced TFTs electrical properties. The best performing thin films were applied in IGZO TFTs as hybrid dielectrics. The optimized TFTs show good reproducibility with an average mobility of 40.24 ± 1.1 cm2∙V-1∙s-1, subthreshold slope of 0.169 ± 0.012 V∙dec-1, a turn-on voltage of 0.078 ± 0.004 V and a low operating voltage (maximum 2 V).
publishDate 2017
dc.date.none.fl_str_mv 2017-11
2017
2017-11-01T00:00:00Z
2018-07-23T08:09:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/42277
TID:202315983
url http://hdl.handle.net/10362/42277
identifier_str_mv TID:202315983
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137937940545536