Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques

Detalhes bibliográficos
Autor(a) principal: Indorf, Fenja
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/161317
Resumo: This research study performs a customer segmentation on a medical beauty case to inform data driven decision making and refine marketing efforts. RFM analysis with a K-Means clustering algorithm, and an HDBSCAN after UMAP dimensionality reduction have been applied. Natural language processing, Doc2Vec, served as the means for sequence embedding. A decision tree algorithm is used to interpret the clustering results. HDBSCAN achieved the best clustering results, and customers were grouped into five clusters based on their purchasing behavior and demographics. The recommended model is the RFM model, and the resulting three customer groups are used to derive marketing strategy recommendations.
id RCAP_8594dc88ca7e7a758fbc0929e7a862fa
oai_identifier_str oai:run.unl.pt:10362/161317
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniquesBusiness analyticsCustomer segmentationClusteringNatural language processingDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis research study performs a customer segmentation on a medical beauty case to inform data driven decision making and refine marketing efforts. RFM analysis with a K-Means clustering algorithm, and an HDBSCAN after UMAP dimensionality reduction have been applied. Natural language processing, Doc2Vec, served as the means for sequence embedding. A decision tree algorithm is used to interpret the clustering results. HDBSCAN achieved the best clustering results, and customers were grouped into five clusters based on their purchasing behavior and demographics. The recommended model is the RFM model, and the resulting three customer groups are used to derive marketing strategy recommendations.Han, QiweiRUNIndorf, Fenja2022-12-152022-12-152026-01-26T00:00:00Z2022-12-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/161317TID:203317459enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:14Zoai:run.unl.pt:10362/161317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:29.427778Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
title Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
spellingShingle Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
Indorf, Fenja
Business analytics
Customer segmentation
Clustering
Natural language processing
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
title_full Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
title_fullStr Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
title_full_unstemmed Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
title_sort Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
author Indorf, Fenja
author_facet Indorf, Fenja
author_role author
dc.contributor.none.fl_str_mv Han, Qiwei
RUN
dc.contributor.author.fl_str_mv Indorf, Fenja
dc.subject.por.fl_str_mv Business analytics
Customer segmentation
Clustering
Natural language processing
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Business analytics
Customer segmentation
Clustering
Natural language processing
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This research study performs a customer segmentation on a medical beauty case to inform data driven decision making and refine marketing efforts. RFM analysis with a K-Means clustering algorithm, and an HDBSCAN after UMAP dimensionality reduction have been applied. Natural language processing, Doc2Vec, served as the means for sequence embedding. A decision tree algorithm is used to interpret the clustering results. HDBSCAN achieved the best clustering results, and customers were grouped into five clusters based on their purchasing behavior and demographics. The recommended model is the RFM model, and the resulting three customer groups are used to derive marketing strategy recommendations.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-15
2022-12-15
2022-12-15T00:00:00Z
2026-01-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/161317
TID:203317459
url http://hdl.handle.net/10362/161317
identifier_str_mv TID:203317459
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138165792964608