Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/161317 |
Resumo: | This research study performs a customer segmentation on a medical beauty case to inform data driven decision making and refine marketing efforts. RFM analysis with a K-Means clustering algorithm, and an HDBSCAN after UMAP dimensionality reduction have been applied. Natural language processing, Doc2Vec, served as the means for sequence embedding. A decision tree algorithm is used to interpret the clustering results. HDBSCAN achieved the best clustering results, and customers were grouped into five clusters based on their purchasing behavior and demographics. The recommended model is the RFM model, and the resulting three customer groups are used to derive marketing strategy recommendations. |
id |
RCAP_8594dc88ca7e7a758fbc0929e7a862fa |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/161317 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniquesBusiness analyticsCustomer segmentationClusteringNatural language processingDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis research study performs a customer segmentation on a medical beauty case to inform data driven decision making and refine marketing efforts. RFM analysis with a K-Means clustering algorithm, and an HDBSCAN after UMAP dimensionality reduction have been applied. Natural language processing, Doc2Vec, served as the means for sequence embedding. A decision tree algorithm is used to interpret the clustering results. HDBSCAN achieved the best clustering results, and customers were grouped into five clusters based on their purchasing behavior and demographics. The recommended model is the RFM model, and the resulting three customer groups are used to derive marketing strategy recommendations.Han, QiweiRUNIndorf, Fenja2022-12-152022-12-152026-01-26T00:00:00Z2022-12-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/161317TID:203317459enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:14Zoai:run.unl.pt:10362/161317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:29.427778Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
title |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
spellingShingle |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques Indorf, Fenja Business analytics Customer segmentation Clustering Natural language processing Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
title_full |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
title_fullStr |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
title_full_unstemmed |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
title_sort |
Data-driven customer segmentation in the medical beauty industry: clustering models and natural language processing techniques |
author |
Indorf, Fenja |
author_facet |
Indorf, Fenja |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
dc.contributor.author.fl_str_mv |
Indorf, Fenja |
dc.subject.por.fl_str_mv |
Business analytics Customer segmentation Clustering Natural language processing Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Business analytics Customer segmentation Clustering Natural language processing Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This research study performs a customer segmentation on a medical beauty case to inform data driven decision making and refine marketing efforts. RFM analysis with a K-Means clustering algorithm, and an HDBSCAN after UMAP dimensionality reduction have been applied. Natural language processing, Doc2Vec, served as the means for sequence embedding. A decision tree algorithm is used to interpret the clustering results. HDBSCAN achieved the best clustering results, and customers were grouped into five clusters based on their purchasing behavior and demographics. The recommended model is the RFM model, and the resulting three customer groups are used to derive marketing strategy recommendations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-15 2022-12-15 2022-12-15T00:00:00Z 2026-01-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/161317 TID:203317459 |
url |
http://hdl.handle.net/10362/161317 |
identifier_str_mv |
TID:203317459 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138165792964608 |