Global minimum variance portfolios under uncertainty: a robust optimization approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/88869 https://doi.org/10.1007/s10898-019-00859-x |
Resumo: | This paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns. |
id |
RCAP_85a865ec953430e9642ff82747a457e0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/88869 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Global minimum variance portfolios under uncertainty: a robust optimization approachPortfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolioThis paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns.2020-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/88869http://hdl.handle.net/10316/88869https://doi.org/10.1007/s10898-019-00859-xengCaçador, SandraDias, Joana MatosGodinho, Pedro Manuel Cortesãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T04:11:40Zoai:estudogeral.uc.pt:10316/88869Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:19.483569Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
title |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
spellingShingle |
Global minimum variance portfolios under uncertainty: a robust optimization approach Caçador, Sandra Portfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolio |
title_short |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
title_full |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
title_fullStr |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
title_full_unstemmed |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
title_sort |
Global minimum variance portfolios under uncertainty: a robust optimization approach |
author |
Caçador, Sandra |
author_facet |
Caçador, Sandra Dias, Joana Matos Godinho, Pedro Manuel Cortesão |
author_role |
author |
author2 |
Dias, Joana Matos Godinho, Pedro Manuel Cortesão |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Caçador, Sandra Dias, Joana Matos Godinho, Pedro Manuel Cortesão |
dc.subject.por.fl_str_mv |
Portfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolio |
topic |
Portfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolio |
description |
This paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/88869 http://hdl.handle.net/10316/88869 https://doi.org/10.1007/s10898-019-00859-x |
url |
http://hdl.handle.net/10316/88869 https://doi.org/10.1007/s10898-019-00859-x |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133987410542592 |