Global minimum variance portfolios under uncertainty: a robust optimization approach

Detalhes bibliográficos
Autor(a) principal: Caçador, Sandra
Data de Publicação: 2020
Outros Autores: Dias, Joana Matos, Godinho, Pedro Manuel Cortesão
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/88869
https://doi.org/10.1007/s10898-019-00859-x
Resumo: This paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns.
id RCAP_85a865ec953430e9642ff82747a457e0
oai_identifier_str oai:estudogeral.uc.pt:10316/88869
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Global minimum variance portfolios under uncertainty: a robust optimization approachPortfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolioThis paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns.2020-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/88869http://hdl.handle.net/10316/88869https://doi.org/10.1007/s10898-019-00859-xengCaçador, SandraDias, Joana MatosGodinho, Pedro Manuel Cortesãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T04:11:40Zoai:estudogeral.uc.pt:10316/88869Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:19.483569Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Global minimum variance portfolios under uncertainty: a robust optimization approach
title Global minimum variance portfolios under uncertainty: a robust optimization approach
spellingShingle Global minimum variance portfolios under uncertainty: a robust optimization approach
Caçador, Sandra
Portfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolio
title_short Global minimum variance portfolios under uncertainty: a robust optimization approach
title_full Global minimum variance portfolios under uncertainty: a robust optimization approach
title_fullStr Global minimum variance portfolios under uncertainty: a robust optimization approach
title_full_unstemmed Global minimum variance portfolios under uncertainty: a robust optimization approach
title_sort Global minimum variance portfolios under uncertainty: a robust optimization approach
author Caçador, Sandra
author_facet Caçador, Sandra
Dias, Joana Matos
Godinho, Pedro Manuel Cortesão
author_role author
author2 Dias, Joana Matos
Godinho, Pedro Manuel Cortesão
author2_role author
author
dc.contributor.author.fl_str_mv Caçador, Sandra
Dias, Joana Matos
Godinho, Pedro Manuel Cortesão
dc.subject.por.fl_str_mv Portfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolio
topic Portfolio selection, multi-objective, robust optimization, relative robustness, absolute robustness, global minimum variance portfolio
description This paper presents new models which seek to optimize the first and second moments of asset returns without estimating expected returns. Motivated by the stability of optimal solutions computed by optimizing only the second moment and applying the robust optimization methodology which allows to incorporate the uncertainty in the optimization model itself, we extend and combine existing methodologies in order to define a method for computing relative-robust and absolute-robust minimum variance portfolios. For the relative robust strategy, where the maximum regret is minimized, regret is defined as the increase in the investment risk resulting from investing in a given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute robust strategy which minimizes the maximum risk was applied assuming the worst-case scenario over the whole uncertainty set. Across alternate time windows, results provide new evidence that the proposed robust minimum variance portfolios outperform non-robust portfolios. Whether portfolio measurement is based on return, risk, regret or modified Sharpe ratio, results suggest that the robust methodologies are able to optimize the first and second moments without the need to estimate expected returns.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/88869
http://hdl.handle.net/10316/88869
https://doi.org/10.1007/s10898-019-00859-x
url http://hdl.handle.net/10316/88869
https://doi.org/10.1007/s10898-019-00859-x
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133987410542592