An expert system for extracting knowledge from customers’ reviews

Detalhes bibliográficos
Autor(a) principal: Castelli, Mauro
Data de Publicação: 2017
Outros Autores: Manzoni, Luca, Vanneschi, Leonardo, Popovič, Aleš
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/86400
Resumo: Castelli, M., Manzoni, L., Vanneschi, L., & Popovič, A. (2017). An expert system for extracting knowledge from customers’ reviews: The case of Amazon.com, Inc. Expert Systems with Applications, 84(October), 117-126. https://doi.org/10.1016/j.eswa.2017.05.008
id RCAP_85fd094d4654213e45f9ddb002fd9a12
oai_identifier_str oai:run.unl.pt:10362/86400
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An expert system for extracting knowledge from customers’ reviewsThe case of Amazon.com, Inc.Customers’ feedbackE-commerceGenetic programmingSemanticsEngineering(all)Computer Science ApplicationsArtificial IntelligenceCastelli, M., Manzoni, L., Vanneschi, L., & Popovič, A. (2017). An expert system for extracting knowledge from customers’ reviews: The case of Amazon.com, Inc. Expert Systems with Applications, 84(October), 117-126. https://doi.org/10.1016/j.eswa.2017.05.008E-commerce has proliferated in the daily activities of end-consumers and firms alike. For firms, consumer satisfaction is an important indicator of e-commerce success. Today, consumers’ reviews and feedback are increasingly shaping consumer intentions regarding new purchases and repeated purchases, while helping to attract new customers. In our work, we use an expert system to predict the sentiment of a product considering a subset of available customers’ reviews.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNCastelli, MauroManzoni, LucaVanneschi, LeonardoPopovič, Aleš2019-11-04T23:35:14Z2017-10-302017-10-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10application/pdfhttp://hdl.handle.net/10362/86400eng0957-4174PURE: 13511722http://www.scopus.com/inward/record.url?scp=85019055201&partnerID=8YFLogxKhttps://doi.org/10.1016/j.eswa.2017.05.008info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:38:44Zoai:run.unl.pt:10362/86400Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:36:40.959115Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An expert system for extracting knowledge from customers’ reviews
The case of Amazon.com, Inc.
title An expert system for extracting knowledge from customers’ reviews
spellingShingle An expert system for extracting knowledge from customers’ reviews
Castelli, Mauro
Customers’ feedback
E-commerce
Genetic programming
Semantics
Engineering(all)
Computer Science Applications
Artificial Intelligence
title_short An expert system for extracting knowledge from customers’ reviews
title_full An expert system for extracting knowledge from customers’ reviews
title_fullStr An expert system for extracting knowledge from customers’ reviews
title_full_unstemmed An expert system for extracting knowledge from customers’ reviews
title_sort An expert system for extracting knowledge from customers’ reviews
author Castelli, Mauro
author_facet Castelli, Mauro
Manzoni, Luca
Vanneschi, Leonardo
Popovič, Aleš
author_role author
author2 Manzoni, Luca
Vanneschi, Leonardo
Popovič, Aleš
author2_role author
author
author
dc.contributor.none.fl_str_mv Information Management Research Center (MagIC) - NOVA Information Management School
NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Castelli, Mauro
Manzoni, Luca
Vanneschi, Leonardo
Popovič, Aleš
dc.subject.por.fl_str_mv Customers’ feedback
E-commerce
Genetic programming
Semantics
Engineering(all)
Computer Science Applications
Artificial Intelligence
topic Customers’ feedback
E-commerce
Genetic programming
Semantics
Engineering(all)
Computer Science Applications
Artificial Intelligence
description Castelli, M., Manzoni, L., Vanneschi, L., & Popovič, A. (2017). An expert system for extracting knowledge from customers’ reviews: The case of Amazon.com, Inc. Expert Systems with Applications, 84(October), 117-126. https://doi.org/10.1016/j.eswa.2017.05.008
publishDate 2017
dc.date.none.fl_str_mv 2017-10-30
2017-10-30T00:00:00Z
2019-11-04T23:35:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/86400
url http://hdl.handle.net/10362/86400
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0957-4174
PURE: 13511722
http://www.scopus.com/inward/record.url?scp=85019055201&partnerID=8YFLogxK
https://doi.org/10.1016/j.eswa.2017.05.008
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137984494174208