Soft target and functional complexity reduction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/115822 |
Resumo: | Vanneschi, L., & Castelli, M. (2021). Soft target and functional complexity reduction: A hybrid regularization method for genetic programming. Expert Systems with Applications, 177, 1-11. [114929]. https://doi.org/10.1016/j.eswa.2021.114929 |
id |
RCAP_ad8bd024eae74e36300f0f6447ea9c6c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/115822 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Soft target and functional complexity reductionA hybrid regularization method for genetic programmingFunctional complexityGenetic programmingHybrid systemRegularizationSoft targetEngineering(all)Computer Science ApplicationsArtificial IntelligenceVanneschi, L., & Castelli, M. (2021). Soft target and functional complexity reduction: A hybrid regularization method for genetic programming. Expert Systems with Applications, 177, 1-11. [114929]. https://doi.org/10.1016/j.eswa.2021.114929Regularization is frequently used in supervised machine learning to prevent models from overfitting. This paper tackles the problem of regularization in genetic programming. We apply, for the first time, soft target regularization, a method recently defined for artificial neural networks, to genetic programming. Also, we introduce a novel measure of functional complexity of the genetic programming individuals, aimed at quantifying their degree of curvature. We experimentally demonstrate that both the use of soft target regularization, and the minimization of the complexity during learning, are often able to reduce overfitting, but they are never able to eliminate it. On the other hand, we demonstrate that the integration of these two strategies into a novel hybrid genetic programming system can completely eliminate overfitting, for all the studied test cases. Last but not least, consistently with what found in the literature, we offer experimental evidence of the fact that the size of the genetic programming models has no correlation with their generalization ability.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNVanneschi, LeonardoCastelli, Mauro2024-01-24T01:31:44Z2021-09-012021-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/115822eng0957-4174PURE: 29275368https://doi.org/10.1016/j.eswa.2021.114929info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:58:19Zoai:run.unl.pt:10362/115822Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:42:51.020617Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Soft target and functional complexity reduction A hybrid regularization method for genetic programming |
title |
Soft target and functional complexity reduction |
spellingShingle |
Soft target and functional complexity reduction Vanneschi, Leonardo Functional complexity Genetic programming Hybrid system Regularization Soft target Engineering(all) Computer Science Applications Artificial Intelligence |
title_short |
Soft target and functional complexity reduction |
title_full |
Soft target and functional complexity reduction |
title_fullStr |
Soft target and functional complexity reduction |
title_full_unstemmed |
Soft target and functional complexity reduction |
title_sort |
Soft target and functional complexity reduction |
author |
Vanneschi, Leonardo |
author_facet |
Vanneschi, Leonardo Castelli, Mauro |
author_role |
author |
author2 |
Castelli, Mauro |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Vanneschi, Leonardo Castelli, Mauro |
dc.subject.por.fl_str_mv |
Functional complexity Genetic programming Hybrid system Regularization Soft target Engineering(all) Computer Science Applications Artificial Intelligence |
topic |
Functional complexity Genetic programming Hybrid system Regularization Soft target Engineering(all) Computer Science Applications Artificial Intelligence |
description |
Vanneschi, L., & Castelli, M. (2021). Soft target and functional complexity reduction: A hybrid regularization method for genetic programming. Expert Systems with Applications, 177, 1-11. [114929]. https://doi.org/10.1016/j.eswa.2021.114929 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01 2021-09-01T00:00:00Z 2024-01-24T01:31:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/115822 |
url |
http://hdl.handle.net/10362/115822 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0957-4174 PURE: 29275368 https://doi.org/10.1016/j.eswa.2021.114929 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138039745740800 |