Matrix representations of a special polynomial sequence in arbitrary dimension

Detalhes bibliográficos
Autor(a) principal: Cação, Isabel
Data de Publicação: 2012
Outros Autores: Falcão, Maria Irene, Malonek, Helmuth Robert
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15314
Resumo: This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra.
id RCAP_86248afbcbb9be68be5a8a9a5c5b7d03
oai_identifier_str oai:ria.ua.pt:10773/15314
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Matrix representations of a special polynomial sequence in arbitrary dimensionSpecial polynomial sequenceMonogenic functionMatrix representationThis paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra.Springer Verlag2016-03-16T15:24:57Z2012-12-01T00:00:00Z2012-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15314eng2195-372410.1007/BF03321833Cação, IsabelFalcão, Maria IreneMalonek, Helmuth Robertinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:07Zoai:ria.ua.pt:10773/15314Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:38.020668Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Matrix representations of a special polynomial sequence in arbitrary dimension
title Matrix representations of a special polynomial sequence in arbitrary dimension
spellingShingle Matrix representations of a special polynomial sequence in arbitrary dimension
Cação, Isabel
Special polynomial sequence
Monogenic function
Matrix representation
title_short Matrix representations of a special polynomial sequence in arbitrary dimension
title_full Matrix representations of a special polynomial sequence in arbitrary dimension
title_fullStr Matrix representations of a special polynomial sequence in arbitrary dimension
title_full_unstemmed Matrix representations of a special polynomial sequence in arbitrary dimension
title_sort Matrix representations of a special polynomial sequence in arbitrary dimension
author Cação, Isabel
author_facet Cação, Isabel
Falcão, Maria Irene
Malonek, Helmuth Robert
author_role author
author2 Falcão, Maria Irene
Malonek, Helmuth Robert
author2_role author
author
dc.contributor.author.fl_str_mv Cação, Isabel
Falcão, Maria Irene
Malonek, Helmuth Robert
dc.subject.por.fl_str_mv Special polynomial sequence
Monogenic function
Matrix representation
topic Special polynomial sequence
Monogenic function
Matrix representation
description This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-01T00:00:00Z
2012-12
2016-03-16T15:24:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15314
url http://hdl.handle.net/10773/15314
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2195-3724
10.1007/BF03321833
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137556547239936