Matrix representations of a special polynomial sequence in arbitrary dimension
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15314 |
Resumo: | This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra. |
id |
RCAP_86248afbcbb9be68be5a8a9a5c5b7d03 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15314 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Matrix representations of a special polynomial sequence in arbitrary dimensionSpecial polynomial sequenceMonogenic functionMatrix representationThis paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra.Springer Verlag2016-03-16T15:24:57Z2012-12-01T00:00:00Z2012-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15314eng2195-372410.1007/BF03321833Cação, IsabelFalcão, Maria IreneMalonek, Helmuth Robertinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:28:07Zoai:ria.ua.pt:10773/15314Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:38.020668Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Matrix representations of a special polynomial sequence in arbitrary dimension |
title |
Matrix representations of a special polynomial sequence in arbitrary dimension |
spellingShingle |
Matrix representations of a special polynomial sequence in arbitrary dimension Cação, Isabel Special polynomial sequence Monogenic function Matrix representation |
title_short |
Matrix representations of a special polynomial sequence in arbitrary dimension |
title_full |
Matrix representations of a special polynomial sequence in arbitrary dimension |
title_fullStr |
Matrix representations of a special polynomial sequence in arbitrary dimension |
title_full_unstemmed |
Matrix representations of a special polynomial sequence in arbitrary dimension |
title_sort |
Matrix representations of a special polynomial sequence in arbitrary dimension |
author |
Cação, Isabel |
author_facet |
Cação, Isabel Falcão, Maria Irene Malonek, Helmuth Robert |
author_role |
author |
author2 |
Falcão, Maria Irene Malonek, Helmuth Robert |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cação, Isabel Falcão, Maria Irene Malonek, Helmuth Robert |
dc.subject.por.fl_str_mv |
Special polynomial sequence Monogenic function Matrix representation |
topic |
Special polynomial sequence Monogenic function Matrix representation |
description |
This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of ultiplicativity caused by the non-commutativity of the underlying algebra. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12-01T00:00:00Z 2012-12 2016-03-16T15:24:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15314 |
url |
http://hdl.handle.net/10773/15314 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2195-3724 10.1007/BF03321833 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137556547239936 |