On the analytical solutions of the Hindmarsh-Rose neuronal model
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/5997 |
Resumo: | In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations. |
id |
RCAP_87cfae639601ca524c414cdc2135f082 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/5997 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the analytical solutions of the Hindmarsh-Rose neuronal modelAnalytic solutionsNonlinear differential equationsChaosNeuronal modelHomotopy analysis methodStep homotopy analysis methodIn this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.SPRINGERRCIPLDuarte, JorgeJanuário, CristinaMartins, Nuno2016-04-15T14:07:59Z2015-112015-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/5997engDUARTE, JORGE; JANUÁRIO,CRISTINA; MARTINS, NUNO - On the analytical solutions of the Hindmarsh-Rose neuronal model. Nonlinear Dynamics. ISSN. 0924-090X. Vol. 82, N.º 3 (2015), pp. 1221-12310924-090X10.1007/s11071-015-2228-5metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T09:50:14Zoai:repositorio.ipl.pt:10400.21/5997Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:15:12.700661Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
title |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
spellingShingle |
On the analytical solutions of the Hindmarsh-Rose neuronal model Duarte, Jorge Analytic solutions Nonlinear differential equations Chaos Neuronal model Homotopy analysis method Step homotopy analysis method |
title_short |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
title_full |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
title_fullStr |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
title_full_unstemmed |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
title_sort |
On the analytical solutions of the Hindmarsh-Rose neuronal model |
author |
Duarte, Jorge |
author_facet |
Duarte, Jorge Januário, Cristina Martins, Nuno |
author_role |
author |
author2 |
Januário, Cristina Martins, Nuno |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Duarte, Jorge Januário, Cristina Martins, Nuno |
dc.subject.por.fl_str_mv |
Analytic solutions Nonlinear differential equations Chaos Neuronal model Homotopy analysis method Step homotopy analysis method |
topic |
Analytic solutions Nonlinear differential equations Chaos Neuronal model Homotopy analysis method Step homotopy analysis method |
description |
In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 2015-11-01T00:00:00Z 2016-04-15T14:07:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/5997 |
url |
http://hdl.handle.net/10400.21/5997 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
DUARTE, JORGE; JANUÁRIO,CRISTINA; MARTINS, NUNO - On the analytical solutions of the Hindmarsh-Rose neuronal model. Nonlinear Dynamics. ISSN. 0924-090X. Vol. 82, N.º 3 (2015), pp. 1221-1231 0924-090X 10.1007/s11071-015-2228-5 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPRINGER |
publisher.none.fl_str_mv |
SPRINGER |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133409821327360 |