On comparison of approximate solutions for linear and nonlinear schrodinger equations

Detalhes bibliográficos
Autor(a) principal: Korpinar, Zeliha
Data de Publicação: 2019
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Acta scientiarum. Technology (Online)
Texto Completo: http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596
Resumo:  In this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions. 
id UEM-6_b83dbe4251a540c6c7e0be18edfe6ab4
oai_identifier_str oai:periodicos.uem.br/ojs:article/36596
network_acronym_str UEM-6
network_name_str Acta scientiarum. Technology (Online)
repository_id_str
spelling On comparison of approximate solutions for linear and nonlinear schrodinger equationsresidual power series methodhomotopy analysis transform methodSchrödinger equations. In this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions. Universidade Estadual De Maringá2019-05-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3659610.4025/actascitechnol.v41i1.36596Acta Scientiarum. Technology; Vol 41 (2019): Publicação Contínua; e36596Acta Scientiarum. Technology; v. 41 (2019): Publicação Contínua; e365961806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596/pdfCopyright (c) 2019 Acta Scientiarum. Technologyhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessKorpinar, Zeliha2019-07-17T11:54:33Zoai:periodicos.uem.br/ojs:article/36596Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2019-07-17T11:54:33Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv On comparison of approximate solutions for linear and nonlinear schrodinger equations
title On comparison of approximate solutions for linear and nonlinear schrodinger equations
spellingShingle On comparison of approximate solutions for linear and nonlinear schrodinger equations
Korpinar, Zeliha
residual power series method
homotopy analysis transform method
Schrödinger equations.
title_short On comparison of approximate solutions for linear and nonlinear schrodinger equations
title_full On comparison of approximate solutions for linear and nonlinear schrodinger equations
title_fullStr On comparison of approximate solutions for linear and nonlinear schrodinger equations
title_full_unstemmed On comparison of approximate solutions for linear and nonlinear schrodinger equations
title_sort On comparison of approximate solutions for linear and nonlinear schrodinger equations
author Korpinar, Zeliha
author_facet Korpinar, Zeliha
author_role author
dc.contributor.author.fl_str_mv Korpinar, Zeliha
dc.subject.por.fl_str_mv residual power series method
homotopy analysis transform method
Schrödinger equations.
topic residual power series method
homotopy analysis transform method
Schrödinger equations.
description  In this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions. 
publishDate 2019
dc.date.none.fl_str_mv 2019-05-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596
10.4025/actascitechnol.v41i1.36596
url http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596
identifier_str_mv 10.4025/actascitechnol.v41i1.36596
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2019 Acta Scientiarum. Technology
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Acta Scientiarum. Technology
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual De Maringá
publisher.none.fl_str_mv Universidade Estadual De Maringá
dc.source.none.fl_str_mv Acta Scientiarum. Technology; Vol 41 (2019): Publicação Contínua; e36596
Acta Scientiarum. Technology; v. 41 (2019): Publicação Contínua; e36596
1806-2563
1807-8664
reponame:Acta scientiarum. Technology (Online)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Acta scientiarum. Technology (Online)
collection Acta scientiarum. Technology (Online)
repository.name.fl_str_mv Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv ||actatech@uem.br
_version_ 1799315336470724608