On comparison of approximate solutions for linear and nonlinear schrodinger equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Acta scientiarum. Technology (Online) |
Texto Completo: | http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596 |
Resumo: | In this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions. |
id |
UEM-6_b83dbe4251a540c6c7e0be18edfe6ab4 |
---|---|
oai_identifier_str |
oai:periodicos.uem.br/ojs:article/36596 |
network_acronym_str |
UEM-6 |
network_name_str |
Acta scientiarum. Technology (Online) |
repository_id_str |
|
spelling |
On comparison of approximate solutions for linear and nonlinear schrodinger equationsresidual power series methodhomotopy analysis transform methodSchrödinger equations. In this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions. Universidade Estadual De Maringá2019-05-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/3659610.4025/actascitechnol.v41i1.36596Acta Scientiarum. Technology; Vol 41 (2019): Publicação Contínua; e36596Acta Scientiarum. Technology; v. 41 (2019): Publicação Contínua; e365961806-25631807-8664reponame:Acta scientiarum. Technology (Online)instname:Universidade Estadual de Maringá (UEM)instacron:UEMenghttp://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596/pdfCopyright (c) 2019 Acta Scientiarum. Technologyhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessKorpinar, Zeliha2019-07-17T11:54:33Zoai:periodicos.uem.br/ojs:article/36596Revistahttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/indexPUBhttps://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/oai||actatech@uem.br1807-86641806-2563opendoar:2019-07-17T11:54:33Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM)false |
dc.title.none.fl_str_mv |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
title |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
spellingShingle |
On comparison of approximate solutions for linear and nonlinear schrodinger equations Korpinar, Zeliha residual power series method homotopy analysis transform method Schrödinger equations. |
title_short |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
title_full |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
title_fullStr |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
title_full_unstemmed |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
title_sort |
On comparison of approximate solutions for linear and nonlinear schrodinger equations |
author |
Korpinar, Zeliha |
author_facet |
Korpinar, Zeliha |
author_role |
author |
dc.contributor.author.fl_str_mv |
Korpinar, Zeliha |
dc.subject.por.fl_str_mv |
residual power series method homotopy analysis transform method Schrödinger equations. |
topic |
residual power series method homotopy analysis transform method Schrödinger equations. |
description |
In this paper, homotopy analysis transform method and residual power series method for solving linear and nonlinear Schrödinger equations are introduced. Residual power series algorithm gets Maclaurin expansion of the numerical soliton solutions. The solutions of our equations are computed in the form of rapidly convergent series with easily calculable components by using mathematica software package. Reliability of methods are given graphical consequens and series solutions are made use of to illustrate the solution. The approximate solutions are compared with the known exact solutions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596 10.4025/actascitechnol.v41i1.36596 |
url |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596 |
identifier_str_mv |
10.4025/actascitechnol.v41i1.36596 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/36596/pdf |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Acta Scientiarum. Technology https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Acta Scientiarum. Technology https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
publisher.none.fl_str_mv |
Universidade Estadual De Maringá |
dc.source.none.fl_str_mv |
Acta Scientiarum. Technology; Vol 41 (2019): Publicação Contínua; e36596 Acta Scientiarum. Technology; v. 41 (2019): Publicação Contínua; e36596 1806-2563 1807-8664 reponame:Acta scientiarum. Technology (Online) instname:Universidade Estadual de Maringá (UEM) instacron:UEM |
instname_str |
Universidade Estadual de Maringá (UEM) |
instacron_str |
UEM |
institution |
UEM |
reponame_str |
Acta scientiarum. Technology (Online) |
collection |
Acta scientiarum. Technology (Online) |
repository.name.fl_str_mv |
Acta scientiarum. Technology (Online) - Universidade Estadual de Maringá (UEM) |
repository.mail.fl_str_mv |
||actatech@uem.br |
_version_ |
1799315336470724608 |