A machine learning approach to predicting stock returns
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/138154 |
Resumo: | Machine learning approaches to stock market forecasting have become increasingly popular throughout the years due to their predictive power and ability to identify hidden patterns in the data. However, considering the inherent volatility and complexity of stock markets, this is a challenging problem to model. This paper presents a comparative analysis of the performance of various machine learning regression algorithms in predicting stock returns. Several leading and technical indicators are considered as features to predict the monthly return of the S&P 500 Index, a market-capitalization-weighted index of the 500 largest publicly traded companies in the United States. |
id |
RCAP_881c7ff34edefeda437860c7a50d37e8 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/138154 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A machine learning approach to predicting stock returnsPredictionMachine learning algorithmsPythonStock marketForecasting stock returnsDomínio/Área Científica::Ciências Sociais::Economia e GestãoMachine learning approaches to stock market forecasting have become increasingly popular throughout the years due to their predictive power and ability to identify hidden patterns in the data. However, considering the inherent volatility and complexity of stock markets, this is a challenging problem to model. This paper presents a comparative analysis of the performance of various machine learning regression algorithms in predicting stock returns. Several leading and technical indicators are considered as features to predict the monthly return of the S&P 500 Index, a market-capitalization-weighted index of the 500 largest publicly traded companies in the United States.Rodrigues, Paulo Manuel MarquesRUNSilva, Francisco Trindade De Oliveira2022-05-18T15:27:04Z2021-06-292021-05-212021-06-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/138154TID:202894975enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:15:30Zoai:run.unl.pt:10362/138154Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:48:59.082506Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A machine learning approach to predicting stock returns |
title |
A machine learning approach to predicting stock returns |
spellingShingle |
A machine learning approach to predicting stock returns Silva, Francisco Trindade De Oliveira Prediction Machine learning algorithms Python Stock market Forecasting stock returns Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
A machine learning approach to predicting stock returns |
title_full |
A machine learning approach to predicting stock returns |
title_fullStr |
A machine learning approach to predicting stock returns |
title_full_unstemmed |
A machine learning approach to predicting stock returns |
title_sort |
A machine learning approach to predicting stock returns |
author |
Silva, Francisco Trindade De Oliveira |
author_facet |
Silva, Francisco Trindade De Oliveira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Paulo Manuel Marques RUN |
dc.contributor.author.fl_str_mv |
Silva, Francisco Trindade De Oliveira |
dc.subject.por.fl_str_mv |
Prediction Machine learning algorithms Python Stock market Forecasting stock returns Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Prediction Machine learning algorithms Python Stock market Forecasting stock returns Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Machine learning approaches to stock market forecasting have become increasingly popular throughout the years due to their predictive power and ability to identify hidden patterns in the data. However, considering the inherent volatility and complexity of stock markets, this is a challenging problem to model. This paper presents a comparative analysis of the performance of various machine learning regression algorithms in predicting stock returns. Several leading and technical indicators are considered as features to predict the monthly return of the S&P 500 Index, a market-capitalization-weighted index of the 500 largest publicly traded companies in the United States. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-29 2021-05-21 2021-06-29T00:00:00Z 2022-05-18T15:27:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/138154 TID:202894975 |
url |
http://hdl.handle.net/10362/138154 |
identifier_str_mv |
TID:202894975 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138089808953344 |