Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/21452 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
id |
RCAP_a6377d6b88bdd3100171cb37760ebe8d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/21452 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approachGenetic programmingStock marketsMachine learningGeometric semantic operatorsForecastingProject Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and ManagementPredicting nancial markets is a task of extreme di culty. The factors that in uence stock prices are extremely complex to model. Machine Learning algorithms have been widely used to predict nancial markets with some degree of success. This Master's project aims to study the application of these algorithms to the Portuguese stock market, the PSI-20, with special emphasis on genetic programming and the introduction of the concept of semantics in the process of evolution. Three systems based on genetic programming were studied: STGP, GSGP and GSGP-LS. The construction of the predictive models is based on historical information of the index extracted through a blooberg portal. In order to analyze the quality of the models based on genetic programming, the nal results were compared with other Machine Learning algorithms through the application of signi cance statistical tests. An analysis of the quality of the results of the di erent algorithms is presented and discussed.Castelli, MauroRUNDinis Oliveira, André2017-06-06T13:55:55Z2017-05-302017-05-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/21452TID:201702312enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:08:07Zoai:run.unl.pt:10362/21452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:26:47.779454Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
title |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
spellingShingle |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach Dinis Oliveira, André Genetic programming Stock markets Machine learning Geometric semantic operators Forecasting |
title_short |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
title_full |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
title_fullStr |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
title_full_unstemmed |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
title_sort |
Forecasting stock markets using machine learning : forecasting the PSI-20 index using a machine learning approach |
author |
Dinis Oliveira, André |
author_facet |
Dinis Oliveira, André |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Dinis Oliveira, André |
dc.subject.por.fl_str_mv |
Genetic programming Stock markets Machine learning Geometric semantic operators Forecasting |
topic |
Genetic programming Stock markets Machine learning Geometric semantic operators Forecasting |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-06T13:55:55Z 2017-05-30 2017-05-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/21452 TID:201702312 |
url |
http://hdl.handle.net/10362/21452 |
identifier_str_mv |
TID:201702312 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137897554640896 |