A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices

Detalhes bibliográficos
Autor(a) principal: Rebocho, M. N.
Data de Publicação: 2018
Outros Autores: Filipuk, Galina, Chen, Yang, Branquinho, A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/8996
Resumo: It is proved a characterization theorem for semi-classical orthogonal polynomials on non- uniform lattices that states the equivalence between the Pearson equation for the weight and some systems involving the orthogonal polynomials as well as the functions of the second kind. As a consequence, it is deduced the analogue of the so-called compatibility conditions in the ladder operator scheme. The classical orthogonal polynomials on non- uniform lattices are then recovered under such compatibility conditions, through a closed formula for the recurrence relation coefficients.
id RCAP_88b2876e8668d2caacd6baea0fd69580
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/8996
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A characterization theorem for semi-classical orthogonal polynomials on non-uniform latticesOrthogonal polynomialsDivided-difference operatorNon-uniform latticesAskey-Wilson operatorSemi-classical classIt is proved a characterization theorem for semi-classical orthogonal polynomials on non- uniform lattices that states the equivalence between the Pearson equation for the weight and some systems involving the orthogonal polynomials as well as the functions of the second kind. As a consequence, it is deduced the analogue of the so-called compatibility conditions in the ladder operator scheme. The classical orthogonal polynomials on non- uniform lattices are then recovered under such compatibility conditions, through a closed formula for the recurrence relation coefficients.uBibliorumRebocho, M. N.Filipuk, GalinaChen, YangBranquinho, A.2020-02-04T15:00:01Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/8996engA. Branquinho, Y. Chen, G. Filipuk, and M.N. Rebocho, A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices, Applied Mathematics and Computation 334 (2018) 356-366info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:29Zoai:ubibliorum.ubi.pt:10400.6/8996Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:15.147495Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
title A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
spellingShingle A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
Rebocho, M. N.
Orthogonal polynomials
Divided-difference operator
Non-uniform lattices
Askey-Wilson operator
Semi-classical class
title_short A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
title_full A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
title_fullStr A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
title_full_unstemmed A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
title_sort A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
author Rebocho, M. N.
author_facet Rebocho, M. N.
Filipuk, Galina
Chen, Yang
Branquinho, A.
author_role author
author2 Filipuk, Galina
Chen, Yang
Branquinho, A.
author2_role author
author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Rebocho, M. N.
Filipuk, Galina
Chen, Yang
Branquinho, A.
dc.subject.por.fl_str_mv Orthogonal polynomials
Divided-difference operator
Non-uniform lattices
Askey-Wilson operator
Semi-classical class
topic Orthogonal polynomials
Divided-difference operator
Non-uniform lattices
Askey-Wilson operator
Semi-classical class
description It is proved a characterization theorem for semi-classical orthogonal polynomials on non- uniform lattices that states the equivalence between the Pearson equation for the weight and some systems involving the orthogonal polynomials as well as the functions of the second kind. As a consequence, it is deduced the analogue of the so-called compatibility conditions in the ladder operator scheme. The classical orthogonal polynomials on non- uniform lattices are then recovered under such compatibility conditions, through a closed formula for the recurrence relation coefficients.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2020-02-04T15:00:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/8996
url http://hdl.handle.net/10400.6/8996
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv A. Branquinho, Y. Chen, G. Filipuk, and M.N. Rebocho, A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices, Applied Mathematics and Computation 334 (2018) 356-366
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136385231224832