A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.6/8996 |
Resumo: | It is proved a characterization theorem for semi-classical orthogonal polynomials on non- uniform lattices that states the equivalence between the Pearson equation for the weight and some systems involving the orthogonal polynomials as well as the functions of the second kind. As a consequence, it is deduced the analogue of the so-called compatibility conditions in the ladder operator scheme. The classical orthogonal polynomials on non- uniform lattices are then recovered under such compatibility conditions, through a closed formula for the recurrence relation coefficients. |
id |
RCAP_88b2876e8668d2caacd6baea0fd69580 |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/8996 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform latticesOrthogonal polynomialsDivided-difference operatorNon-uniform latticesAskey-Wilson operatorSemi-classical classIt is proved a characterization theorem for semi-classical orthogonal polynomials on non- uniform lattices that states the equivalence between the Pearson equation for the weight and some systems involving the orthogonal polynomials as well as the functions of the second kind. As a consequence, it is deduced the analogue of the so-called compatibility conditions in the ladder operator scheme. The classical orthogonal polynomials on non- uniform lattices are then recovered under such compatibility conditions, through a closed formula for the recurrence relation coefficients.uBibliorumRebocho, M. N.Filipuk, GalinaChen, YangBranquinho, A.2020-02-04T15:00:01Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/8996engA. Branquinho, Y. Chen, G. Filipuk, and M.N. Rebocho, A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices, Applied Mathematics and Computation 334 (2018) 356-366info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:29Zoai:ubibliorum.ubi.pt:10400.6/8996Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:15.147495Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
title |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
spellingShingle |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices Rebocho, M. N. Orthogonal polynomials Divided-difference operator Non-uniform lattices Askey-Wilson operator Semi-classical class |
title_short |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
title_full |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
title_fullStr |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
title_full_unstemmed |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
title_sort |
A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices |
author |
Rebocho, M. N. |
author_facet |
Rebocho, M. N. Filipuk, Galina Chen, Yang Branquinho, A. |
author_role |
author |
author2 |
Filipuk, Galina Chen, Yang Branquinho, A. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Rebocho, M. N. Filipuk, Galina Chen, Yang Branquinho, A. |
dc.subject.por.fl_str_mv |
Orthogonal polynomials Divided-difference operator Non-uniform lattices Askey-Wilson operator Semi-classical class |
topic |
Orthogonal polynomials Divided-difference operator Non-uniform lattices Askey-Wilson operator Semi-classical class |
description |
It is proved a characterization theorem for semi-classical orthogonal polynomials on non- uniform lattices that states the equivalence between the Pearson equation for the weight and some systems involving the orthogonal polynomials as well as the functions of the second kind. As a consequence, it is deduced the analogue of the so-called compatibility conditions in the ladder operator scheme. The classical orthogonal polynomials on non- uniform lattices are then recovered under such compatibility conditions, through a closed formula for the recurrence relation coefficients. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z 2020-02-04T15:00:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/8996 |
url |
http://hdl.handle.net/10400.6/8996 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
A. Branquinho, Y. Chen, G. Filipuk, and M.N. Rebocho, A characterization theorem for semi-classical orthogonal polynomials on non-uniform lattices, Applied Mathematics and Computation 334 (2018) 356-366 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136385231224832 |