Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15123 |
Resumo: | In this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x)(1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper. |
id |
RCAP_dceff6bc39f0cd9cf55cfd06882cdb05 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15123 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretationOrthogonal polynomialsDifference operatorsOperator theoryToda latticesIn this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x)(1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper.Elsevier2018-07-20T14:00:51Z2016-01-01T00:00:00Z2016-01-012016-12-31T16:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15123eng0022-247X10.1016/j.jmaa.2015.07.051Area, I.Branquinho, A.Moreno, A. FoulquiéGodoy, E.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:54Zoai:ria.ua.pt:10773/15123Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:33.222516Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
title |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
spellingShingle |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation Area, I. Orthogonal polynomials Difference operators Operator theory Toda lattices |
title_short |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
title_full |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
title_fullStr |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
title_full_unstemmed |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
title_sort |
Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation |
author |
Area, I. |
author_facet |
Area, I. Branquinho, A. Moreno, A. Foulquié Godoy, E. |
author_role |
author |
author2 |
Branquinho, A. Moreno, A. Foulquié Godoy, E. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Area, I. Branquinho, A. Moreno, A. Foulquié Godoy, E. |
dc.subject.por.fl_str_mv |
Orthogonal polynomials Difference operators Operator theory Toda lattices |
topic |
Orthogonal polynomials Difference operators Operator theory Toda lattices |
description |
In this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x)(1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016-01-01 2016-12-31T16:00:00Z 2018-07-20T14:00:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15123 |
url |
http://hdl.handle.net/10773/15123 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-247X 10.1016/j.jmaa.2015.07.051 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137555226034176 |