On fuzzy and crisp solutions of a novel fractional pandemic model

Detalhes bibliográficos
Autor(a) principal: Umapathy, Kalpana
Data de Publicação: 2023
Outros Autores: Palanivelu, Balaganesan, Leiva, Víctor, Dhandapani, Prasantha Bharathi, Castro, Cecília
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/1822/85452
Resumo: Understanding disease dynamics is crucial for accurately predicting and effectively managing epidemic outbreaks. Mathematical modeling serves as an essential tool in such understanding. This study introduces an advanced susceptible, infected, recovered, and dead (SIRD) model that uniquely considers the evolution of the death parameter, alongside the susceptibility and infection states. This model accommodates the varying environmental factors influencing disease susceptibility. Moreover, our SIRD model introduces fractional changes in death cases, which adds a novel dimension to the traditional counts of susceptible and infected individuals. Given the model’s complexity, we employ the Laplace-Adomian decomposition method. The method allows us to explore various scenarios, including non-fuzzy non-fractional, non-fuzzy fractional, and fuzzy fractional cases. Our methodology enables us to determine the model’s equilibrium positions, compute the basic reproduction number, confirm stability, and provide computational simulations. Our study offers insightful understanding into the dynamics of pandemic diseases and underscores the critical role that mathematical modeling plays in devising effective public health strategies. The ultimate goal is to improve disease management through precise predictions of disease behavior and spread.
id RCAP_89e04943371bcf31c2f42a2161b135be
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/85452
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On fuzzy and crisp solutions of a novel fractional pandemic modelDecompositionEpidemic modelsFractional changesLaplace-adomianStabilityCiências Naturais::MatemáticasParcerias para a implementação dos objetivosUnderstanding disease dynamics is crucial for accurately predicting and effectively managing epidemic outbreaks. Mathematical modeling serves as an essential tool in such understanding. This study introduces an advanced susceptible, infected, recovered, and dead (SIRD) model that uniquely considers the evolution of the death parameter, alongside the susceptibility and infection states. This model accommodates the varying environmental factors influencing disease susceptibility. Moreover, our SIRD model introduces fractional changes in death cases, which adds a novel dimension to the traditional counts of susceptible and infected individuals. Given the model’s complexity, we employ the Laplace-Adomian decomposition method. The method allows us to explore various scenarios, including non-fuzzy non-fractional, non-fuzzy fractional, and fuzzy fractional cases. Our methodology enables us to determine the model’s equilibrium positions, compute the basic reproduction number, confirm stability, and provide computational simulations. Our study offers insightful understanding into the dynamics of pandemic diseases and underscores the critical role that mathematical modeling plays in devising effective public health strategies. The ultimate goal is to improve disease management through precise predictions of disease behavior and spread.ANCD -Agenția Națională pentru Cercetare și Dezvoltare(UIDP/00013/2020)MDPIUniversidade do MinhoUmapathy, KalpanaPalanivelu, BalaganesanLeiva, VíctorDhandapani, Prasantha BharathiCastro, Cecília2023-072023-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/85452engUmapathy, K.; Palanivelu, B.; Leiva, V.; Dhandapani, P.B.; Castro, C. On Fuzzy and Crisp Solutions of a Novel Fractional Pandemic Model. Fractal Fract. 2023, 7, 528. https://doi.org/10.3390/fractalfract70705282504-311010.3390/fractalfract7070528info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-23T01:33:16Zoai:repositorium.sdum.uminho.pt:1822/85452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:29:43.006219Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On fuzzy and crisp solutions of a novel fractional pandemic model
title On fuzzy and crisp solutions of a novel fractional pandemic model
spellingShingle On fuzzy and crisp solutions of a novel fractional pandemic model
Umapathy, Kalpana
Decomposition
Epidemic models
Fractional changes
Laplace-adomian
Stability
Ciências Naturais::Matemáticas
Parcerias para a implementação dos objetivos
title_short On fuzzy and crisp solutions of a novel fractional pandemic model
title_full On fuzzy and crisp solutions of a novel fractional pandemic model
title_fullStr On fuzzy and crisp solutions of a novel fractional pandemic model
title_full_unstemmed On fuzzy and crisp solutions of a novel fractional pandemic model
title_sort On fuzzy and crisp solutions of a novel fractional pandemic model
author Umapathy, Kalpana
author_facet Umapathy, Kalpana
Palanivelu, Balaganesan
Leiva, Víctor
Dhandapani, Prasantha Bharathi
Castro, Cecília
author_role author
author2 Palanivelu, Balaganesan
Leiva, Víctor
Dhandapani, Prasantha Bharathi
Castro, Cecília
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Umapathy, Kalpana
Palanivelu, Balaganesan
Leiva, Víctor
Dhandapani, Prasantha Bharathi
Castro, Cecília
dc.subject.por.fl_str_mv Decomposition
Epidemic models
Fractional changes
Laplace-adomian
Stability
Ciências Naturais::Matemáticas
Parcerias para a implementação dos objetivos
topic Decomposition
Epidemic models
Fractional changes
Laplace-adomian
Stability
Ciências Naturais::Matemáticas
Parcerias para a implementação dos objetivos
description Understanding disease dynamics is crucial for accurately predicting and effectively managing epidemic outbreaks. Mathematical modeling serves as an essential tool in such understanding. This study introduces an advanced susceptible, infected, recovered, and dead (SIRD) model that uniquely considers the evolution of the death parameter, alongside the susceptibility and infection states. This model accommodates the varying environmental factors influencing disease susceptibility. Moreover, our SIRD model introduces fractional changes in death cases, which adds a novel dimension to the traditional counts of susceptible and infected individuals. Given the model’s complexity, we employ the Laplace-Adomian decomposition method. The method allows us to explore various scenarios, including non-fuzzy non-fractional, non-fuzzy fractional, and fuzzy fractional cases. Our methodology enables us to determine the model’s equilibrium positions, compute the basic reproduction number, confirm stability, and provide computational simulations. Our study offers insightful understanding into the dynamics of pandemic diseases and underscores the critical role that mathematical modeling plays in devising effective public health strategies. The ultimate goal is to improve disease management through precise predictions of disease behavior and spread.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
2023-07-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/85452
url https://hdl.handle.net/1822/85452
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Umapathy, K.; Palanivelu, B.; Leiva, V.; Dhandapani, P.B.; Castro, C. On Fuzzy and Crisp Solutions of a Novel Fractional Pandemic Model. Fractal Fract. 2023, 7, 528. https://doi.org/10.3390/fractalfract7070528
2504-3110
10.3390/fractalfract7070528
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132797879713792