In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques

Detalhes bibliográficos
Autor(a) principal: Resende, Plinio
Data de Publicação: 2022
Outros Autores: Fortes, Claudio Querido, Nascimento, Emilia Matos do, Santos De Sousa, Catarina Isabel, Querido Fortes, Natalia Rodrigues, Thomaz, Diego Centenaro, Bragança Pereira, Basilio de, Pinto, Fausto J., Oliveira, Glaucia Maria Moraes de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10451/51900
Resumo: © 2021 The Authors. Published by Elsevier Inc. on behalf of the Canadian Cardiovascular Society. This is an open access article under the CC BY-NC- ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
id RCAP_8a2f09ac3b1a9cbaa9096e188c00d0e5
oai_identifier_str oai:repositorio.ul.pt:10451/51900
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques© 2021 The Authors. Published by Elsevier Inc. on behalf of the Canadian Cardiovascular Society. This is an open access article under the CC BY-NC- ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Background: Early identification of patients with infective endocarditis (IE) at higher risk for in-hospital mortality is essential to guide management and improve prognosis. Methods: A retrospective analysis was conducted of a cohort of patients followed up from 1978 to 2015, classified according to the modified Duke criteria. Clinical parameters, echocardiographic data, and blood cultures were assessed. Techniques of machine learning, such as the classification tree, were used to explain the association between clinical characteristics and in-hospital mortality. Additionally, the log-linear model and graphical random forests (GRaFo) representation were used to assess the degree of dependence among in-hospital outcomes of IE. Results: This study analyzed 653 patients: 449 (69.0%) with definite IE; 204 (31.0%) with possible IE; mean age, 41.3 ± 19.2 years; 420 (64%) men. Mode of IE acquisition: community-acquired (67.6%), nosocomial (17.0%), undetermined (15.4%). Complications occurred in 547 patients (83.7%), the most frequent being heart failure (47.0%), neurologic complications (30.7%), and dialysis-dependent renal failure (6.5%). In-hospital mortality was 36.0%. The classification tree analysis identified subgroups with higher in-hospital mortality: patients with community-acquired IE and peripheral stigmata on admission; and patients with nosocomial IE. The log-linear model showed that surgical treatment was related to higher in-hospital mortality in patients with neurologic complications. Conclusions: The use of a machine-learning model allowed identification of subgroups of patients at higher risk for in-hospital mortality. Peripheral stigmata, nosocomial IE, absence of vegetation, and surgery in the presence of neurologic complications are predictors of fatal outcomes in machine learning-based analysis.ElsevierRepositório da Universidade de LisboaResende, PlinioFortes, Claudio QueridoNascimento, Emilia Matos doSantos De Sousa, Catarina IsabelQuerido Fortes, Natalia RodriguesThomaz, Diego CentenaroBragança Pereira, Basilio dePinto, Fausto J.Oliveira, Glaucia Maria Moraes de2022-03-22T16:34:51Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/51900engCJC Open. 2021 Sep 11;4(2):164-17210.1016/j.cjco.2021.08.0172589-790Xinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T16:56:53Zoai:repositorio.ul.pt:10451/51900Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:03:06.246479Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
title In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
spellingShingle In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
Resende, Plinio
title_short In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
title_full In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
title_fullStr In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
title_full_unstemmed In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
title_sort In-hospital outcomes of infective endocarditis from 1978 to 2015: analysis through machine-learning techniques
author Resende, Plinio
author_facet Resende, Plinio
Fortes, Claudio Querido
Nascimento, Emilia Matos do
Santos De Sousa, Catarina Isabel
Querido Fortes, Natalia Rodrigues
Thomaz, Diego Centenaro
Bragança Pereira, Basilio de
Pinto, Fausto J.
Oliveira, Glaucia Maria Moraes de
author_role author
author2 Fortes, Claudio Querido
Nascimento, Emilia Matos do
Santos De Sousa, Catarina Isabel
Querido Fortes, Natalia Rodrigues
Thomaz, Diego Centenaro
Bragança Pereira, Basilio de
Pinto, Fausto J.
Oliveira, Glaucia Maria Moraes de
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Resende, Plinio
Fortes, Claudio Querido
Nascimento, Emilia Matos do
Santos De Sousa, Catarina Isabel
Querido Fortes, Natalia Rodrigues
Thomaz, Diego Centenaro
Bragança Pereira, Basilio de
Pinto, Fausto J.
Oliveira, Glaucia Maria Moraes de
description © 2021 The Authors. Published by Elsevier Inc. on behalf of the Canadian Cardiovascular Society. This is an open access article under the CC BY-NC- ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
publishDate 2022
dc.date.none.fl_str_mv 2022-03-22T16:34:51Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/51900
url http://hdl.handle.net/10451/51900
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv CJC Open. 2021 Sep 11;4(2):164-172
10.1016/j.cjco.2021.08.017
2589-790X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134581750759424